• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 13
  • 9
  • 6
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 103
  • 103
  • 32
  • 24
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vaccinia virus mimics receptor tyrosine kinase signalling to achieve actin based motility

Frischknecht, Friedrich. January 2000 (has links)
Berlin, Reie University, Diss., 2000. / Dateiformat: zip, Dateien im PDF-Format.
2

Investigating the Role of Vaccinia Virus-derived Small Extracellular Vesicle Cargo in Infection

McKay, Hayley Elizabeth 29 July 2019 (has links)
No description available.
3

Humanized mouse model: a system to study the interactions of human immune system with vaccinia virus-infected human tumors in mice / Humanisiertes Mausmodell: ein System, um die Wechselwirkungen des menschlichen Immunsystems mit Vaccinia-Virus-infizierten humanen Tumoren in Mäusen zu untersuchen

Tsoneva, Desislava January 2017 (has links) (PDF)
Ein vielversprechender neuer Ansatz zur Behandlung von Krebs beim Menschen ist die Verwendung von onkolytischen Viren, die einen Tumor-spezifischen Tropismus aufweisen. Einer der Top-Kandidaten in diesem Bereich ist das onkolytische Vaccinia Virus (VACV), das bereits vielversprechende Ergebnisse in Tierversuchen und in klinischen Studien gezeigt hat. Aber die von den in vivo in tierischen Modellen erhaltenen Resultate könnten ungenaue Informationen wegen der anatomischen und physiologischen Unterschiede zwischen den Spezies liefern. Andererseits sind Studien in Menschen aufgrund ethischer Erwägungen und potenzieller Toxizität nur limitiert möglich. Die zahlreichen Einschränkungen und Risiken, die mit den Humanstudien verbunden sind, könnten mit der Verwendung eines humanisierten Mausmodells vermieden werden. Die LIVP-1.1.1, GLV-2b372, GLV-1h68, GLV-1h375, GLV-1h376 and GLV-1h377 VACV Stämmen wurden von der Genelux Corporation zur Verfügung gestellt. GLV-2b372 wurde durch Einfügen der TurboFP635 Expressionskassette in den J2R Genlocus des parentalen LIVP-1.1.1-Stammes konstruiert. GLV-1h375, -1h376 and -1h377 kodiert das Gen für den menschlichen CTLA4-blockierenden Einzelketten-Antikörper (CTLA4 scAb). Befunde aus Replikations- and Zytotoxizitätsstudien zeigten, dass alle sechs Viren Tumorzellen infizieren, sich in ihnen replizieren und sie in Zellkultur schließlich ebenso dosis- und zeitabhängig effizient abtöten konnten. CTLA4 scAb und β-Glucuronidase (GusA) Expression sowie Virus Titer in GLV-1h376-infizierten A549-Zellen wurde anhand von ELISA-, β-Glucuronidase- and Standard Plaque-Assays bestimmt. Hierbei zeigte sich eine ausgezeichnete Korrelation mit Korrelationskoeffizienten R2>0.9806. Der durch das GLV-1h376 kodierte CTLA4 scAb wurde erfolgreich aus Überständen von infizierten CV-1-Zellen gereinigt. CTLA4 scAb hat eine hohe in-vitro-Affinität zu seinem menschlichen CTLA4-Zielmolekül sowie abwesende Kreuzreaktivität gegenüber murine CTLA4 gezeigt. CTLA4 scAb Funktionalität wurde in Jurkat-Zellen bestätigt. LIVP-1.1.1, GLV-2b372, GLV-1h68 und GLV-1h376 wurden auch in nicht-tumorösen und/oder tumortragenden humanisierten Mäusen getestet. Zunächst wurde gezeigt, dass die Injektion von menschlichen CD34+ Stammzellen in die Leber von vorkonditionierten neugeborenen NSG Mäusen zu einer erfolgreichen systemische Rekonstitution mit menschlichen Immunzellen geführt hat. CD19+-B-Zellen, CD4+- und CD8+-CD3+-T-Zellen, NKp46+CD56- und NKp46+CD56+-NK-Zellen sowie CD33+-myeloischen Zellen wurden detektiert. Die Mehrheit der nachgewisenen humanen hämatopoetischen Zellen im Mäuseblut in den ersten Wochen nach der Humanisierung waren CD19+-B-Zellen, und nur ein kleiner Teil waren CD3+-T-Zellen. Mit der Zeit wurde eine signifikante Veränderung in CD19+/CD3+-Verhältnis beobachtet, die parallel zur Abnahme der B-Zellen und einem Anstieg der T-Zellen kam. Die Implantation von A549-Zellen unter die Haut dieser Mäuse führte zu einem progressiven Tumorwachstum. Bildgebende Verfahren zur Detektion von Virus-vermittelter TurboFP635- und GFP-Expression, Standard Plaque Assays sowie immunohistochemische Analysen bestätigten die erfolgreiche Invasion der Viren in die subkutanen Tumoren. Die humane CD45+-Zellpopulation in Tumoren wurde hauptsächlich durch NKp46+CD56bright-NK-Zellen und einen hohen Anteil von aktivierten CD4+- und zytotoxische CD8+-T-Zellen dargestellt. Es wurden jedoch keine signifikanten Unterschiede zwischen den Kontroll- und LIVP-1.1.1-infizierten Tumoren beobachtet, was darauf hindeutete, dass die Rekrutierung von NK- und aktivierten T-Zellen, mehr Tumorgewebe-spezifisch als Virus-abhängig waren. Die GLV-1h376-vermittelten CTLA4 scAb-Expression in den infizierten Tumoren war ebenfalls nicht in der Lage, die Aktivierung von Tumor-infiltrierenden T-Zellen im Vergleich zur Kontrolle und GLV-1h68-behandelten Mäusen, signifikant zu erhöhen. ELISA-, β-Glucuronidase- and Standard Plaque-Assays zeigten eine eindeutige Korrelation mit den Korrelationskoeffizienten R2>0,9454 zwischen CTLA4 scAb- und GusA-Konzentrationen und Virus Titer in Tumorproben von GLV-1h376-behandelten Mäusen. T-Zellen, die aus der Milz dieser Tumor-tragenden Mäuse isoliert wurden, waren funktionell und konnten erfolgreich mit Beads aktiviert werden. Mehr CD25+ und IFN-ɣ+ T-Zellen wurden in der GLV-1h376-Gruppe gefunden, wahrscheinlich aufgrund der CTLA4-Blockade durch die Virus-vermittelte CTLA4 scAb-Expression in den Mäusen. Außerdem wurde eine höhere Konzentration von IL-2 in dem Kulturüberstand von diesen Splenozyten im Vergleich zu Kontrollproben nachgewiesen. Im Gegensatz zu der Aktivierung mit Beads konnten T-Zellen von allen drei Maus-Gruppen nicht durch A549 Tumorzellen ex vivo aktiviert werden. Unser Mausmodell hat den besonderen Vorteil, dass sich Tumoren unter der Haut der humanisierten Mäuse entwickeln, was eine genaue Überwachung des Tumorwachstums und Auswertung der onkolytischen Virotherapie ermöglicht. / A promising new approach for the treatment of human cancer is the use of oncolytic viruses, which exhibit tumor tropism. One of the top candidates in this area is the oncolytic vaccinia virus (VACV), which has already shown promising results in animal studies and in clinical trials. However, due to discrepancies in both innate and adaptive immunity between mice and men the evaluation of the vaccinia virus’ interactions with the host immune system in mice are not fully conclusive of what is actually happening in human cancer patients after systemic administration of vaccinia virus. Also, ethical and legal concerns as well as risk of potential toxicity limit research involving human patients. Therefore, a good in vivo model for testing interactions between vaccinia virus and human immune cells, avoiding the numerous limitations and risks associated with human studies, could be a humanized mouse model. LIVP-1.1.1, GLV-2b372, GLV-1h68, GLV-1h375, GLV-1h376 and GLV-1h377 VACVs were provided by Genelux Corporation. GLV-2b372 was constructed by inserting TurboFP635 expression cassette into the J2R locus of the parental LIVP-1.1.1. GLV-1h375, -1h376 and -1h377 VACVs encode the human CTLA4-blocking single-chain antibody (CTLA4 scAb). Performed replication and cytotoxicity assays demonstrated that all six viruses were able to infect, replicate in and kill human tumor cells in virus-dose- and time-dependent fashion. CTLA4 scAb and β-glucuronidase (GusA) expression as well as viral titers in GLV-1h376-infected cells were analyzed by ELISA, β-glucuronidase assay and standard plaque assay, respectively, and compared. An excellent correlation with correlation coefficients R2>0.9806 were observed. GLV-1h376-encoded CTLA4 scAb was successfully purified from supernatants of infected CV-1 cells and demonstrated in vitro affinity to its human CTLA4 target and lack of cross-reactivity to mouse CTLA4. CTLA4 scAb functionality was confirmed in Jurkat cells. LIVP-1.1.1, GLV-2b372, GLV-1h68 and GLV-1h376 were next studied in non-tumorous and/or tumor-bearing humanized mice. It was demonstrated that injection of human CD34+ stem cells into the liver of preconditioned newborn NSG mice let to a successful systemic reconstitution with human immune cells. CD19+ B cells, CD4 and CD8 single positive CD3+ T cell, NKp46+CD56- and NKp46+CD56+ NK cells as well as CD33+ myeloid cells developed. At early time points after engraftment, majority of the human hematopoietic cells detected in the mouse blood were CD19+ B cells and only a small portion were CD3+ T cells. With time a significant change in CD19+/CD3+ ratio was reported with a decrease of B cells and an increase of T cells. Implantation of A549 cells under the skin of those humanized NSG mice resulted in a progressive tumor growth, described for the first time in this thesis. Successful colonization of subcutaneous A549 tumors with VACVs was visualized and demonstrated by detection of virus-mediated TurboFP635 and GFP expression as well as by standard plaque assay and immunohistochemistry. The human CD45+ cell population in tumors was represented mainly by NKp46+CD56bright NK cells and a large portion of activated CD4+ and cytotoxic CD8+ T cells. However, no significant differences were observed between control and LIVP-1.1.1-infected tumors, suggesting that the recruitment of NK and activated T cells were more tumor tissue specific than virus-dependent. Unfortunately, virus-mediated CTLA4 scAb expression in the GLV-1h376-infected tumors was also not able to significantly increase activation of T cells compared to control and GLV-1h68-treated mice. Importantly, ELISA, β-glucuronidase and standard plaque assays showed an excellent correlation with correlation coefficients R2>0.9454 between CTLA4 scAb, GusA concentrations and viral titers in tumor samples from those GLV-1h376 treated mice. T cells isolated from the spleens of such control or GLV-1h68- or -1h376-treated A549 tumor-bearing mice were functional and could successfully be activated with human T cells activation beads. However, although no significant difference was observed between the three mouse groups, a slightly higher percentage of the GLV-1h376-treated mice-derived T cells were expressing CD25 and producing IFN-ɣ after ex vivo activation, probably due to the CTLA4 blockade by the virus-encoded CTLA4 scAb in the GLV-1h376-treated mice. Also, slightly higher levels of IL-2 were detected in the culture supernatant of those splenocytes compared to control samples. In contrast, T cells from all three mouse groups were not able be activated by A549 tumor cells ex vivo. Our model has the specific advantage that tumors develop under the skin of the humanized mice, which allows accurate monitoring of the tumor growth and evaluation of the oncolytic virotherapy. Therefore it is important to choose the right approaches for its further improvement.
4

Development and characterization of murine monoclonal antibodies capable of neutralizing vaccinia virus

Chen, Ran 24 October 2007 (has links)
INTRODUCTION: Since the eradication of smallpox in 1977, mass vaccination efforts against it have been discontinued. Thus, the majority of the younger population is susceptible to both smallpox virus and vaccinia virus (VV). The re-emergence or intentional release of smallpox will present a serious threat to global health. There are limited supplies of smallpox vaccine, which is associated with significant complications, and pooled anti-VV human immune globulin (VIG) that can be used as prophylaxis or to treat smallpox-exposed individuals. We are developing murine monoclonal antibodies (MAbs) able to neutralize VV. The developed MAbs may be useful in establishing a rapid diagnostic test for the detection of VV infection or providing the genetic materials needed for developing recombinant antibodies suitable for human use. METHODS: VV Western Reserve (WR) strain was propagated in HeLa or Chicken Embryo Fibroblast (CEF) cell lines, purified through a 36% sucrose cushion and inactivated by binary ethyleneimine (BEI). Female BABL/c mice were immunized with inactivated VV. Hybridoma cell lines (HCLs) were developed from spleen cells of the mice with high neutralizing antibody titers. Tissue culture supernatants from the developed HCLs were screened by Enzyme-Linked Immunosorbent Assay (ELISA) and Plaque Reduction Assay (PRA) for their abilities to produce neutralizing antibodies against VV. HCLs producing neutralizing antibodies were sub-cloned by limiting dilution method. Highly neutralizing MAbs were isotyped and purified. The effect of using increasing microgram amounts of each MAb or mixtures of two MAbs on VV neutralization has been determined. Specific target proteins recognized by MAbs were detected by western blot assay (WB). The abilities of the developed MAbs to neutralize other three VV strains, Large-variant (L-variant), IHD-W and New York City Board of Health (NYCBH), were measured. RESULTS: We have developed 261 HCLs producing anti-VV antibodies; 65 of them neutralized VV. Twelve HCLs were sub-cloned. We developed 79 sub-clones producing neutralizing MAbs. The majority of them were immunoglobulin IgG1/κ isotype. Four highly neutralizing MAbs were concentrated and purified. They were able to neutralize 50% of VV infection at 0.01-0.1 µg in PRAs. Synergistic effects on VV neutralization were observed when mixing two MAbs from clones, 1-E9-1-E4 and 2-B7-9-E6, at the amounts giving about 20% and 40% VV neutralization. Based on the WB results, the developed MAbs are recognizing 75 kilodalton (kDa), 45 kDa, 35 kDa or 8 kDa WR VV proteins. The abilities of the developed MAbs to neutralize other strains of VV varied. CONCLUSIONS: Several HCLs producing antibodies against VV were developed. Highly neutralizing MAbs against WR VV have been produced and purified. Virus neutralization is dose dependent and some of MAbs have synergistic neutralization effects on each other. Most of the MAbs were targeting the same three virus envelope proteins indicating that these proteins contain important epitope(s) responsible for the neutralizing effects by the developed MAbs. Variable neutralization abilities were observed on three other VV strains indicating their immunobiologic differences with WR VV strain. The developed MAbs may be used as a research tool to study VV pathogenesis or for the development of chimeric antibodies for clinical applications. / October 2006
5

Development and characterization of murine monoclonal antibodies capable of neutralizing vaccinia virus

Chen, Ran 24 October 2007 (has links)
INTRODUCTION: Since the eradication of smallpox in 1977, mass vaccination efforts against it have been discontinued. Thus, the majority of the younger population is susceptible to both smallpox virus and vaccinia virus (VV). The re-emergence or intentional release of smallpox will present a serious threat to global health. There are limited supplies of smallpox vaccine, which is associated with significant complications, and pooled anti-VV human immune globulin (VIG) that can be used as prophylaxis or to treat smallpox-exposed individuals. We are developing murine monoclonal antibodies (MAbs) able to neutralize VV. The developed MAbs may be useful in establishing a rapid diagnostic test for the detection of VV infection or providing the genetic materials needed for developing recombinant antibodies suitable for human use. METHODS: VV Western Reserve (WR) strain was propagated in HeLa or Chicken Embryo Fibroblast (CEF) cell lines, purified through a 36% sucrose cushion and inactivated by binary ethyleneimine (BEI). Female BABL/c mice were immunized with inactivated VV. Hybridoma cell lines (HCLs) were developed from spleen cells of the mice with high neutralizing antibody titers. Tissue culture supernatants from the developed HCLs were screened by Enzyme-Linked Immunosorbent Assay (ELISA) and Plaque Reduction Assay (PRA) for their abilities to produce neutralizing antibodies against VV. HCLs producing neutralizing antibodies were sub-cloned by limiting dilution method. Highly neutralizing MAbs were isotyped and purified. The effect of using increasing microgram amounts of each MAb or mixtures of two MAbs on VV neutralization has been determined. Specific target proteins recognized by MAbs were detected by western blot assay (WB). The abilities of the developed MAbs to neutralize other three VV strains, Large-variant (L-variant), IHD-W and New York City Board of Health (NYCBH), were measured. RESULTS: We have developed 261 HCLs producing anti-VV antibodies; 65 of them neutralized VV. Twelve HCLs were sub-cloned. We developed 79 sub-clones producing neutralizing MAbs. The majority of them were immunoglobulin IgG1/κ isotype. Four highly neutralizing MAbs were concentrated and purified. They were able to neutralize 50% of VV infection at 0.01-0.1 µg in PRAs. Synergistic effects on VV neutralization were observed when mixing two MAbs from clones, 1-E9-1-E4 and 2-B7-9-E6, at the amounts giving about 20% and 40% VV neutralization. Based on the WB results, the developed MAbs are recognizing 75 kilodalton (kDa), 45 kDa, 35 kDa or 8 kDa WR VV proteins. The abilities of the developed MAbs to neutralize other strains of VV varied. CONCLUSIONS: Several HCLs producing antibodies against VV were developed. Highly neutralizing MAbs against WR VV have been produced and purified. Virus neutralization is dose dependent and some of MAbs have synergistic neutralization effects on each other. Most of the MAbs were targeting the same three virus envelope proteins indicating that these proteins contain important epitope(s) responsible for the neutralizing effects by the developed MAbs. Variable neutralization abilities were observed on three other VV strains indicating their immunobiologic differences with WR VV strain. The developed MAbs may be used as a research tool to study VV pathogenesis or for the development of chimeric antibodies for clinical applications.
6

Development and characterization of murine monoclonal antibodies capable of neutralizing vaccinia virus

Chen, Ran 24 October 2007 (has links)
INTRODUCTION: Since the eradication of smallpox in 1977, mass vaccination efforts against it have been discontinued. Thus, the majority of the younger population is susceptible to both smallpox virus and vaccinia virus (VV). The re-emergence or intentional release of smallpox will present a serious threat to global health. There are limited supplies of smallpox vaccine, which is associated with significant complications, and pooled anti-VV human immune globulin (VIG) that can be used as prophylaxis or to treat smallpox-exposed individuals. We are developing murine monoclonal antibodies (MAbs) able to neutralize VV. The developed MAbs may be useful in establishing a rapid diagnostic test for the detection of VV infection or providing the genetic materials needed for developing recombinant antibodies suitable for human use. METHODS: VV Western Reserve (WR) strain was propagated in HeLa or Chicken Embryo Fibroblast (CEF) cell lines, purified through a 36% sucrose cushion and inactivated by binary ethyleneimine (BEI). Female BABL/c mice were immunized with inactivated VV. Hybridoma cell lines (HCLs) were developed from spleen cells of the mice with high neutralizing antibody titers. Tissue culture supernatants from the developed HCLs were screened by Enzyme-Linked Immunosorbent Assay (ELISA) and Plaque Reduction Assay (PRA) for their abilities to produce neutralizing antibodies against VV. HCLs producing neutralizing antibodies were sub-cloned by limiting dilution method. Highly neutralizing MAbs were isotyped and purified. The effect of using increasing microgram amounts of each MAb or mixtures of two MAbs on VV neutralization has been determined. Specific target proteins recognized by MAbs were detected by western blot assay (WB). The abilities of the developed MAbs to neutralize other three VV strains, Large-variant (L-variant), IHD-W and New York City Board of Health (NYCBH), were measured. RESULTS: We have developed 261 HCLs producing anti-VV antibodies; 65 of them neutralized VV. Twelve HCLs were sub-cloned. We developed 79 sub-clones producing neutralizing MAbs. The majority of them were immunoglobulin IgG1/κ isotype. Four highly neutralizing MAbs were concentrated and purified. They were able to neutralize 50% of VV infection at 0.01-0.1 µg in PRAs. Synergistic effects on VV neutralization were observed when mixing two MAbs from clones, 1-E9-1-E4 and 2-B7-9-E6, at the amounts giving about 20% and 40% VV neutralization. Based on the WB results, the developed MAbs are recognizing 75 kilodalton (kDa), 45 kDa, 35 kDa or 8 kDa WR VV proteins. The abilities of the developed MAbs to neutralize other strains of VV varied. CONCLUSIONS: Several HCLs producing antibodies against VV were developed. Highly neutralizing MAbs against WR VV have been produced and purified. Virus neutralization is dose dependent and some of MAbs have synergistic neutralization effects on each other. Most of the MAbs were targeting the same three virus envelope proteins indicating that these proteins contain important epitope(s) responsible for the neutralizing effects by the developed MAbs. Variable neutralization abilities were observed on three other VV strains indicating their immunobiologic differences with WR VV strain. The developed MAbs may be used as a research tool to study VV pathogenesis or for the development of chimeric antibodies for clinical applications.
7

Functional Genomic Studies of Vaccinia Virus Provide Fundamental Insights into Virus-Host Interactions

Keller, Brian Andrew January 2017 (has links)
The oncolytic virus field is in the midst of strong and sustained growth. The clinical utility of this class of therapeutics has been bolstered in recent years by the rise of immune checkpoint inhibition, which has the potential to work synergistically with oncolytic viruses to increase the scope of patients who respond favourably to therapy. This growth has been further driven by clear industry support with several pharmaceutical companies acquiring or developing oncolytic virus products following the 2015 FDA approval of Talimogene laherparepvec and the generally-accepted potential of immunotherapeutic approaches to cancer treatment. Vaccinia virus is a double-stranded DNA virus with an extensive history of vaccine use in humans and a desirable safety profile. It is a large virus with a complex lifecycle, and its history of use as a vaccine has resulted in the generation of dozens of unique strains. Although it has been studied extensively, much remains unknown about many vaccinia virus gene function(s) and the virus’ interactions with cellular hosts. Vaccinia virus-based oncolytic viruses have been developed, however clinical outcomes thus far have been unsatisfactory. A more complete understanding of vaccinia virus gene functions must therefore precede the effective design of a next-generation vaccinia virus-based oncolytic candidate. With this downstream goal, we sought to (1) understand the unique oncolytic virus-relevant phenotypic properties of five clinical candidate vaccinia virus strains, and (2) generate and characterize a library of single-gene mutants of the Copenhagen strain of vaccinia virus. These studies resulted in the selection of vaccinia virus-Copenhagen as the wild-type strain of choice that will be utilized for future oncolytic virus development. Furthermore, the generation and initial characterization of an 89-member clonal library of vaccinia-Copenhagen single-gene mutants will be an important tool as we seek to generate a next-generation oncolytic virus candidate. Completed characterization studies challenge the role that viral thymidine kinase should play in oncolytic virus design, demonstrate novel functions of the vaccinia virus gene A47L, and provide an understanding of the role of the vaccinia virus gene F15L. These studies also raise the concept of the personalized selection of oncolytic virotherapeutics. This virus library has the potential to increase the fundamental understanding of vaccinia virus biology in this field as well as in the study of vaccine development and pathogen-host interactions.
8

Vaccina Virus Binding and Infection of Primary Human B Cells

Shepherd, Nicole Elizabeth 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Vaccinia virus (VACV), the prototypical poxvirus, was used to eradicate smallpox worldwide and, in recent years, has received considerable attention as a vector for the development of vaccines against infectious diseases and oncolytic virus therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigenpresenting cells (APCs) including monocytes, macrophages, and dendritic cells. However, very few studies have evaluated VACV binding to and infection of primary human B cells, a main type of professional APC. In this study, we evaluated the susceptibility of primary human peripheral B cells at different developmental stages to VACV binding, infection, and replication. We found that VACV exhibited strong binding but little entry into ex vivo B cells. Phenotypic analysis of B cells revealed that plasmablasts were the only subset resistant to VACV binding. Infection studies showed that plasma and mature-naïve B cells were resistant to VACV infection, while memory B cells were preferentially infected. Additionally, VACV infection was increased in larger and proliferative B cells suggesting a bias of VACV infection towards specific stages of differentiation and proliferative ability. VACV infection in B cells was abortive, and cessation of VACV infection was determined to occur at the stage of late viral gene expression. Interestingly, B cell function, measured by cytokine production, was not affected within 24 hours post-infection. In contrast to ex vivo B cells, stimulated B cells were permissive to productive VACV infection. These results demonstrate the value of B cells as a tool to aid in deciphering the intricacies of poxvirus infection in humans. Understanding VACV infection in primary human B cells at various stages of differentiation and maturation is important for the development of a safer smallpox vaccine and better vectors for vaccines against cancers and other infectious diseases.
9

Combinational therapy of tumors in syngeneic mouse tumor models with oncolytic Vaccinia virus strains expressing IL-2 and INF-g. Human adipose tissue-derived stem cell mediated delivery of oncolytic Vaccinia virus / Kombinationstherapie von Tumoren in syngenen Maus-Tumormodellen mit onkolytischen Vaccinia-Virenstämmen, die IL-2 und INF-g exprimieren. Übertragung von onkolytischen Vaccinia-Viren durch menschliche Fettstammzellen

Petrov, Ivan January 2023 (has links) (PDF)
Cancer is one of the leading causes of death worldwide, with currently assessed chances to develop at least one cancer in a lifetime for about 20%. High cases rates and mortality require the development of new anticancer therapies and treatment strategies. Another important concern is toxicity normally associated with conventional therapy methods, such as chemo- and radiotherapy. Among many proposed antitumoral agents, oncolytic viruses are still one of the promising and fast-developing fields of research with almost a hundred studies published data on over 3000 patients since the beginning of the new millennia. Among all oncolytic viruses, the Vaccinia virus is arguably one of the safest, with an extremely long and prominent history of use, since it was the one and only vaccine used in the Smallpox Eradication Program in the 1970s. Interestingly enough, it was the first oncolytic virus proven to have tumor tropism in vitro and in vivo in laboratory settings, and this year we can celebrate an unofficial 100th anniversary since the publication of the fact. While being highly immunogenic, Vaccinia virus DNA replication takes place in the cytoplasm of the infected cell, and virus genes never integrate into the host genome. Another advantage of using Vaccinia as an oncolytic agent is its high genome capacity, which allows inserting up to 25 kbps of exogenous genes, thus allowing to additionally arm the virus against the tumor. Oncolytic virus action consists of two major parts: direct oncolysis and immune activation against the tumor, with the latter being the key to successful treatment. To this moment, preclinical research data are mostly generated in immunocompromised xenograft models, which have hurdles to be properly translated for clinical use. In the first part of the current study, fourteen different recombinant Vaccinia virus strains were tested in two different murine tumor cell lines and corresponding immunocompetent animal models. We found, that Copenhagen backbone Vaccinia viruses while being extremely effective in cell culture, do not show significant oncolytic efficacy in animals. In contrast, several of the LIVP backbone viruses tested (specifically, IL-2 expressing ones) have little replication ability when compared to the Copenhagen strain, but are able to significantly delay tumor growth and prolong survival of the treated animals. We have also noted cytokine related toxicity of the animals to be mouse strain specific. We have also tested the virus with the highest therapeutic benefit in combination with romidepsin and cyclophosphamide. While the combination with histone deacetylase inhibitor romidepsin did not result in therapeutic benefit in our settings, the addition of cyclophosphamide significantly improved the efficacy of the treatment, at the same time reducing cytokine-associated toxicity of the IL-2 expressing virus. In the second part of the work, we analyzed the ability of adipose-derived mesenchymal stem cells to serve as a carrier for the oncolytic Vaccinia virus. We showed for the first time that the cells can be infected with the virus and can generate virus progeny. They are also able to survive for a substantially long time and, when injected into the bloodstream of tumor-bearing animals, produce the virus that is colonizing the tumor. Analysis of the systemic distribution of the cells after injection revealed that infected and uninfected cells are not distributed in the same manner, possibly suggesting that infected cells are getting recognized and cleared by an impaired immune system of athymic mice faster than non-infected cells. Despite this, injection of virus-loaded adipose-derived mesenchymal stem cells to human A549 tumor-bearing xenograft mice resulted in rapid tumor regression and reduced virus-related side effects of the treatment when compared to injection of the naked virus. In conclusion, we have tested two different approaches to augmenting oncolytic Vaccinia virus therapy. First, the combination of recombinant Vaccinia virus expressing IL-2 and cyclophosphamide showed promising results in a syngeneic mouse model, despite the low permissivity of murine cells to the virus. Second, we loaded the oncolytic Vaccinia virus into mesenchymal stem cells and have proven that they can potentially serve as a vehicle for the virus. / Krebs ist eine der häufigsten Todesursachen weltweit, wobei die Wahrscheinlichkeit, im Laufe des Lebens an mindestens einer Krebsart zu erkranken, derzeit auf etwa 20 % geschätzt wird. Die hohen Fallzahlen und die hohe Sterblichkeit erfordern die Entwicklung neuer Krebstherapien und Behandlungsstrategien. Ein weiteres wichtiges Problem ist die Toxizität, die normalerweise mit konventionellen Behandlungsmethoden, wie Chemo- und Strahlentherapie, einhergeht. Unter den vielen vorgeschlagenen antitumoralen Wirkstoffen sind onkolytische Viren nach wie vor eines der vielversprechendsten und sich schnell entwickelnden Forschungsgebiete mit fast hundert veröffentlichten Studien an über 3000 Patienten seit Beginn des neuen Jahrtausends. Unter allen onkolytischen Viren ist das Vaccinia Virus wohl eines der Sichersten und hat eine extrem lange und prominente Anwendungsgeschichte, da es der einzige Impfstoff war, der im Pockenausrottungsprogramm in den 1970er Jahren verwendet wurde. Interessanterweise war es das erste onkolytische Virus, dessen Tumortropismus in vitro und in vivo im Labor nachgewiesen wurde. In diesem Jahr (2022) können wir das inoffizielle 100-jährige Jubiläum seit der Veröffentlichung dieser Tatsache feiern. Obwohl Vaccinia hoch immunogen ist, findet die Replikation im Zytoplasma der infizierten Zelle statt, und die Virusgene werden niemals in das menschliche Genom integriert. Ein weiterer Vorteil der Verwendung von Vaccinia als onkolytisches Agens ist seine hohe Genomkapazität, die es ermöglicht, bis zu 25 kbit/s an exogenen Genen einzufügen, wodurch das Virus zusätzlich gegen den Tumor aufgerüstet werden kann. Die Wirkung des onkolytischen Virus besteht aus zwei Hauptbestandteilen: der direkten Onkolyse und die Aktivierung des Immunsystems gegen den Tumor, wobei letztere der Schlüssel zum Behandlungserfolg ist. Bislang wurden präklinische Forschungsdaten meist in immungeschwächten Xenotransplantationsmodellen gewonnen, die sich nur schwer für den klinischen Einsatz eignen. Im ersten Teil der aktuellen Studie wurden vierzehn verschiedene rekombinante Vaccinia-Virusstämme in zwei verschiedenen murinen Tumorzelllinien und in entsprechenden immunkompetenten Tiermodellen getestet. Wir fanden heraus, dass Kopenhagener Backbone-Vaccinia-Viren zwar in der Zellkultur äußerst wirksam sind, im Tiermodell jedoch keine signifikante onkolytische Wirksamkeit zeigen. Im Gegensatz dazu haben mehrere der getesteten LIVP-Backbone-Viren (insbesondere die IL-2 exprimierenden) im Vergleich zum Kopenhagener Stamm nur eine geringe Replikationsfähigkeit, sind aber in der Lage, das Tumorwachstum deutlich zu verzögern und das Überleben der behandelten Tiere zu verlängern. Wir haben auch festgestellt, dass die Zytokin-bedingte Toxizität der Tiere mausstammspezifisch ist. Wir haben auch das Virus mit dem höchsten therapeutischen Nutzen in Kombination mit Romidepsin und Cyclophosphamid getestet. Während die Kombination mit dem Histon-Deacetylase-Inhibitor Romidepsin in unseren Versuchsreihen keinen therapeutischen Nutzen erbrachte, verbesserte die Zugabe von Cyclophosphamid die Wirksamkeit der Behandlung erheblich und verringerte gleichzeitig die zytokinbedingte Toxizität des IL-2-exprimierenden Virus. Im zweiten Teil der Arbeit analysierten wir die Fähigkeit von aus Fettgewebe gewonnenen mesenchymalen Stammzellen, als Träger für das onkolytische Vaccinia-Virus zu dienen. Wir konnten zum ersten Mal zeigen, dass die Zellen mit dem Virus infiziert werden können und Virusnachkommen erzeugen können. Sie sind auch in der Lage, sehr lange zu überleben und, wenn sie in den Blutkreislauf von Tieren mit Tumoren injiziert werden, das Virus zu produzieren, das den Tumor besiedelt. Die Analyse der systemischen Verteilung der Zellen nach der Injektion ergab, dass infizierte und nicht infizierte Zellen nicht auf die gleiche Weise verteilt werden, was möglicherweise darauf hindeutet, dass infizierte Zellen von einem beeinträchtigten Immunsystem der athymischen Mäuse schneller erkannt und beseitigt werden, als nicht infizierte Zellen. Trotzdem führte die Injektion von virusbeladenen mesenchymalen Stammzellen aus Fettgewebe in A549-Tumor-tragende Xenograft-Mäuse zu einer schnellen Tumorregression und zu geringeren virusbedingten Nebenwirkungen der Behandlung, als bei der Injektion des nackten Virus. Zusammenfassend lässt sich sagen, dass wir zwei verschiedene Ansätze zur Verstärkung der onkolytischen Vaccinia-Virus-Therapie getestet haben. Erstens zeigte die Kombination aus rekombinantem Vaccinia-Virus, das IL-2 exprimiert, und Cyclophosphamid in einem syngenen Mausmodell vielversprechende Ergebnisse, trotz der geringen Permissivität der Mäusezellen für das Virus. Zweitens haben wir onkolytische Vaccinia-Viren in mesenchymale Stammzellen eingebracht und nachgewiesen, dass diese als Vehikel für das Virus dienen können.
10

The Role of CCR5 in Vaccinia virus Pathogenesis

Rahbar, Ramtin 08 March 2011 (has links)
Viral appropriation of chemokine receptors is an effective way to prevent a host immune response against the invading virus. Many viruses, including poxviruses, subvert the host immune response by encoding several chemokine receptor homologues, capable of binding to and thereby precluding chemokines from activating their cognate cell surface receptors. All poxviruses employ strategies to modulate chemokine activity, including virus-encoded chemokine-binding proteins, receptor homologues and ligand mimics. The potential for the involvement of certain chemokine receptors in poxviral infection was suggested in studies utilizing the rabbit poxvirus, myxoma. Specifically, CCR5 was implicated in mediating cell target susceptibility to infection. Our data suggest virus-CCR5 interactions may lead to the selective activation of distinct signaling pathways that are advantageous for the virus. VACV, a member of the poxvirus family, produces two structurally distinct forms of virions, the intracellular mature virus (IMV) and the extracellular enveloped virus (EEV), for which the immediate events following cell entry are ill-defined. Using confocal microscopy, we provided evidence that IMV and EEV enter both permissive and non-permissive cells, and that introduction of CCR5 into non-permissive cells – mouse fibroblasts and human PM1 T cells - renders them permissive for VACV replication. We showed that virus activation of CCR5 leads to the selective activation of distinct signaling pathways that are advantageous for the virus. We demonstrated that VACV infection in permissive cells is inhibited by siRNA knockdown of cell surface CCR5 expression and by the CCR5 antagonist, TAK-779. The importance of tyrosine phosphorylation of CCR5 was suggested by the observation that introduction of a CCR5 mutant, in which all the intracellular tyrosines are replaced by phenylalanines, effectively reduces VACV infection in permissive cells. Moreover, tyrosine-339 was implicated in CCR5 as the critical residue for mediating viral infection, since cells expressing CCR5.Y339F do not support viral replication. The cascade of events that leads to permissive phenotype of these cells includes phosphorylation activation of multiple signaling effectors: Jak-2, IRS-2, ERK1/ 2 and Grb2. These data were supported by findings that viral replication in permissive CCR5 expressing cells is blocked by Herbimycin A, and the Jak2 inhibitor, tyrophostin AG490, but not pertussis toxin. Viewed altogether, a critical role of post-entry events, specifically intracellular tyrosine phosphorylation events, was established in determining permissiveness of cells to VACV replication. Furthermore, evidence was provided that introduction of CCR5 in primary human T cells renders them permissive to VACV replication. Since permissive infection of T cells might represent a mechanism for VACV dissemination throughout the lymphatic system, we hypothesized that the absence of CCR5 may be protective against VACV infection in vivo. To test this hypothesis, wild-type and CCR5 null mice were challenged with VACV by intranasal inoculation. In time course studies we identified aggressive viral replication in the lungs and spleens of CCR5+/+ mice, with no evidence of infection in the CCR5-/- mice. Moreover, associated with VACV infection, we provided evidence for CD4+ and CD8+ T as well as CD11c+ and F4/80+ cell infiltration into the lungs of CCR5+/+ but not CCR5-/- mice, and showed that CCR5-expressing T cells harbor replicating virus. We showed that this CCR5-dependence is VACV-specific, since CCR5-/- mice were as susceptible to intranasal influenza (A/WSN/33) infection as CCR5+/+ mice. In a final series of experiments we provided evidence that adoptive transfer of CCR5+/+ bone marrow into CCR5-/- mice restored VACV permissiveness, with evidence of lung and spleen infection. Taken together, our data showed a critical and novel role for CCR5 in VACV infection and dissemination in vivo. Moreover, our confocal studies suggested a possible physical interaction between cellular proteins and the VACV in cytosole. Using mass spectrometry-based proteomics, glomulin was identified as a host cell protein that interacts with VACV. Knockdown of glomulin expression in human PM1.CCR5 T cells reduced VACV infection. We demonstrate that treatment of PM1.CCR5 T cells with a c-Met phosphorylation inhibitor led to a significant reduction in VACV infectivity. The data indicated that inhibition of c-Met phosphorylation, reduces the cytosolic availability of activated glomulin, thus leading to a decrease in VACV infectivity. These data identify glomulin as a permissivity factor for VACV infection, and as a potential therapeutic target for VACV.

Page generated in 0.0527 seconds