• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 2
  • 2
  • Tagged with
  • 33
  • 33
  • 33
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Relations neurodigestives et stimulation vagale basse-fréquence chez le rat anesthésié : implications du système nerveux central et du système immunitaire / Brain-gut interactions and low-frequency vagus nerve stimulation in an anaesthetized rat model : involvement of the central nervous system and the immune system

Picq, Chloé 29 June 2012 (has links)
IntroductionLa neurostimulation vagale (NSV) à haute fréquence (30 Hz) est utilisée commethérapeutique de certaines formes d’épilepsie et de dépression réfractaires aux traitements chezl’Homme. De plus, la NSV à basse fréquence (5 Hz) a été expérimentée avec succès chez l’animalpour traiter différentes inflammations périphériques, notamment digestives. Des travaux récents ontmis en évidence que cet effet anti-inflammatoire est induit par l’activation des fibres efférentesvagales, libérant en périphérie de l’acétylcholine, inhibant la sécrétion des cytokines proinflammatoires.Cette voie est connue sous le nom de voie anti-inflammatoire cholinergique.Toutefois, le mécanisme d’action de la NSV 5 Hz reste mal connu et d’autres voies pourraient êtremises en jeu impliquant le système nerveux central (SNC) et le système immunitaire périphérique.ButLes travaux réalisés ont eu pour objectif d’étudier l’implication du SNC et du systèmeimmunitaire dans la modulation de l’inflammation induite par la NSV basse fréquence chez unmodèle de rat anesthésié. Tout d’abord, afin d’étudier l’implication du SNC lors de la NSV 5 Hz, uneétude d’imagerie par résonance magnétique fonctionnelle (IRMf) a été réalisée sur le rat «sain»anesthésié. Ensuite, une étude a été effectuée sur l’effet de la NSV sur les cellules immunitairesspléniques ainsi que sur le tube digestif chez un modèle de rat «sain» puis chez un modèle de ratatteint d’une colite expérimentale induite par une injection intra-colique d’acide trinitrobenzènesulfonique (TNBS).RésultatsLes données obtenues lors de l’étude d’IRMf ont mis en évidence un rôle important desfibres afférentes vagales; elles modulent certaines structures du SNC qui pourraient participer à larégulation de l’inflammation digestive induite par la NSV 5 Hz. Les études réalisées sur les souspopulationslymphocytaires spléniques ont révélé que d’autres cellules immunitaires que lesmacrophages étaient impliquées lors de la NSV. Chez le modèle de rat «sain», les résultats decytométrie en flux ont montré que la NSV 3h 5 Hz induisait une diminution de l’activation deslymphocytes T CD4 ainsi que du pourcentage de NKT par rapport aux lymphocytes T. Ces résultatssont en faveur d’un rôle de la NSV 3h inhibant l’activation lymphocytaire et jouant un rôle sur les NKTpossédant des propriétés immunorégulatrices. La NSV 3h n’a pas le même effet chez le modèle de ratprésentant une colite. En effet, le dosage de cytokines sécrétées par les splénocytes en culturemontre que la NSV augmente le potentiel de sécrétion d’IL-10 (cytokine anti-inflammatoire) dessplénocytes et plus particulièrement des lymphocytes T CD4 spléniques. Parallèlement, l’effet antiinflammatoirede la NSV a été mis en évidence au niveau du côlon transverse (au-dessus de la zonelésée) par une diminution des ARNm de SOCS3 et du TNF-α et de la myéloperoxidase. Ces donnéesont démontré un rôle de la NSV sur la fonctionnalité des lymphocytes T CD4 spléniques. La NSV 3h 5Hz orienterait la réponse immunitaire vers une réponse anti-inflammatoire en phase d’initiationd’inflammation digestive. De plus, l’effet anti-inflammatoire de la NSV est retrouvé au niveau du tubedigestif au-dessus de la zone lésée (côlon transverse).ConclusionCes données expérimentales montrent que d’autres voies impliquant différents typescellulaires sont susceptibles d’être mises en oeuvre par la NSV basse fréquence. Elle induitl’implication du SNC par l’activation des afférences vagales et des cellules immunitaires spléniquestelles que les lymphocytes T CD4 et les NKT. Un effet anti-inflammatoire de la NSV est retrouvé auniveau du côlon transverse, mais pas au niveau des lésions dans le côlon distal. Ces résultatsprésentent des implications thérapeutiques : la NSV basse fréquence est actuellement en essaiclinique pour être utilisée comme traitement dans la maladie de Crohn. / Introduction High frequency(30 Hz)vagus nerve stimulation(VNS)has been approved as a treatment for some types of epilepsy and depression in humans. Low-frequency (5 Hz)VNS has also been successful for the treatment of different animal inflammation models, notably digestive inflammation. Recent studies have shown that the anti-inflammatory effect is induced by the activation of the efferent vagal fibers, which secrete acetylcholine in periphery. It links itself to α-7-nicotinic receptors on the macrophages surface, inhibiting the release of pro-inflammatory cytokines. This pathway is known by the name of the cholinergic anti-inflammatory pathway. However, the mechanism of action of low-frequency VNS remains unclear and other pathways could be involved implicating the central nervous system (CNS) and the immune system. Aim The aim of this study was to evaluate the implication of the CNS and the immune system in the modulation of inflammation induced by low-frequency VNS in an anaesthetized rat model. Firstly, to study the implication of the CNS and the contribution of the afferent vagal fibers during 5Hz VNS, a study using functional magnetic resonance imaging (fMRI) on a «healthy» anaesthetized rat model was carried out. Secondly, an experiment on the effect of VNS on splenic immune cells as well as on the digestive tract was fulfilled on a «healthy» rat model followed by a study on a rat model of colitis induced by intracolonic injection of trinitrobenzene sulfonic acid (TNBS). Results fMRI data brought to light an important role of the afferent vagal fibers. They modulate some structures of the CNS which could contribute to the modulation of digestive inflammation by 5Hz VNS. The studies carried out by FACS on the sub-populations of splenic lymphocytes revealed that other immune cells than macrophages could be implicated by VNS. In the «healthy» rat model, with no digestive inflammation, FACS data show that 3h VNS decreases T CD4 lymphocytes activation and the percentage of NKT in relation to T lymphocytes. These data are in favor of an inhibiting role of VNS on lymphocytes activation and also has an impact on NKT cells which have immunoregulatory properties. 3h VNS does not have the same effect on the rat model of colitis. In fact, the quantification of secreted cytokines by cultured splenocytes show that VNS increases the potential of IL-10(anti-iflammatory)cytokine by splenocytes and particularly splenic T CD4 lymphocytes. In the same way, the anti-inflammatory effect of VNS is seen in the transverse colon (above the lesions): decrease of TNF-α and SOCS3 mRNA and of myeloperoxidase. These results show a role of VNS on the functionality of splenic T CD4 lymphocytes inducing an important secretion of IL-10. 3h low-frequency VNS turns the immune response towards an anti-inflammatory response during the early phase of digestive inflammation. Moreover, VNS anti-inflammatory effect is seen in the transverse colon, above the lesions. Conclusion These results reveal that other pathways implicating different cell types are potentially involved besides the classic cholinergic anti-inflammatory pathway by low-frequency VNS. It implicates CNS by the activation of vagal afferents and splenic immune cells such as T CD4 lymphocytes and NKT cells. An anti-inflammatory effect of VNS is found in the transverse colon (above the lesions) even during the initiation phase of digestive inflammation, but not in the distal colon (in the lesions). These date have therapeutic implications: low-frequency VNS is being clinically tested at the moment as a treatment for Crohn's disease.
32

Modélisation de l’interface entre une électrode multipolaire et un nerf périphérique : optimisation des courants pour la stimulation neurale sélective / Modeling the interface between a multipolar electrode and a peripheral nerve : optimization of currents for selective neural stimulation

Dali, Mélissa 21 November 2017 (has links)
La stimulation électrique neurale, appliquée au système nerveux périphérique pour la restauration des fonctions motrices ou la neuromodulation, est une technologie en plein essor, en particulier la stimulation implantée avec des électrodes Cuff positionnées autour d’un nerf périphérique. Le principal frein au développement des systèmes de stimulation est la difficulté à obtenir la stimulation ou l’inhibition des fonctions cibles de manière précise et indépendante, c’est-à-dire, obtenir une sélectivité des fonctions. Les paramètres impliqués dans la sélectivité au sens large ne sont pas toujours intuitifs, et le nombre de degrés de libertés (choix de l’électrode, nombre de contacts, forme du pulse etc.) est important. Tester toutes ces hypothèses en expérimentation n’est pas faisable et inenvisageable dans le réglage des neuroprothèses en contexte clinique. La modélisation a priori nous permet d’établir des critères de choix, de déterminer les stratégies les plus efficaces et de les optimiser. Par ailleurs, un grand nombre d’études ont pu prévoir des stratégies de sélectivité inédites grâce à la modélisation, et validées a posteriori par l’expérimentation. Le schéma de calcul scientifique est composé de deux parties. On modélise, d’une part, la propagation du champ de potentiels électriques générés par les électrodes à l’intérieur d’un volume conducteur représentant le nerf (étude biophysique), et d’autre part l’interaction entre ce champ de potentiels et les neurones (réponse électrophysiologique). Notre première contribution propose une méthode originale de modélisation et d’optimisation de la sélectivité spatiale avec une électrode Cuff, sans connaissance a priori de la topographie de nerf. Partant de ce constat, nous déterminons de nouveaux critères, l’efficacité et la robustesse, complémentaires à la sélectivité, nous permettant de faire un choix entre des configurations multipolaires concurrentes. Ainsi, en fonction de la pondération de ces critères, nous avons développé un algorithme d’optimisation pour déterminer la configuration optimale en fonction de la zone choisie, du diamètre des fibres visées ainsi que de la durée de stimulation, pour un pulse type rectangulaire de référence. Des expérimentations sur modèle animal nous ont permis d’évaluer l’efficacité de la méthode et sa généricité. Ce travail est partie intégrante d’un projet plus vaste de stimulation du nerf vague (projet INTENSE), où l’une des applications concerne le traitement des troubles cardiaques. L’objectif est d’activer sélectivement une population spécifique de fibres nerveuses pour obtenir des effets plus ciblés conduisant à une thérapie améliorée, tout en diminuant les effets secondaires. La deuxième contribution consiste à combiner la sélectivité spatiale et la sélectivité au diamètre de fibre avec un modèle générique de nerf et une électrode Cuff à 12 contacts. L’utilisation d’une forme d’onde particulière (prépulse) combinée avec des configurations multipolaires permet d’activer des fibres d’un diamètre défini dans un espace ciblé. Les perspectives cliniques sont nombreuses, notamment sur la réduction de la fatigue liée à l’utilisation prolongée de la stimulation ou la diminution des effets secondaires. Dans le cadre du projet INTENSE, la seconde application liée à la stimulation du nerf vague vise le problème de l’obésité morbide. L’activation des axones cibles liés aux fonctions gastriques nécessite une quantité de charges conséquente. Plusieurs études suggèrent que les formes de pulse non rectangulaires peuvent activer les axones du système nerveux périphérique avec une quantité de charges réduite comparée à la forme de pulse rectangulaire de référence. Notre dernière contribution concerne l’étude expérimentale et de modélisation de ces formes d’ondes complexes. L’approche par modélisation, si elle est bien maîtrisée, apporte une analyse pertinente voire même indispensable au réglage clinique des neuroprothèses. / Neural electrical stimulation, applied to the peripheral nervous system for motor functions restoration or neuromodulation, is a thriving technology, especially implanted stimulation using Cuff electrodes positioned around a peripheral nerve. The main obstacle to the development of stimulation systems is the difficulty in obtaining the independent stimulation or inhibition of specific target functions (i.e. functional selectivity). The parameters involved in selectivity are not always intuitive and the number of degrees of freedom (choice of electrode, number of contacts, pulse shape etc.) is substantial. Thus, testing all these hypotheses in a clinical context is not conceivable. This choice of parameters can be guided using prior numerical simulations predicting the effect of electrical stimulation on the neural tissue. Numerous studies developed new strategies to achieve selectivity based on modeling results that have been validated a posteriori by experimental works. The computation scheme is composed of two parts : the modeling of the potential field generated by the electrodes inside a conductive medium representing the nerve on the one hand; and the determination of the interaction between this field of potentials and neurons on the other. Our first contribution is an original method of modeling and optimization of the spatial selectivity with a Cuff electrode, without prior knowledge of the nerve topography. Based on this observation, we determined new criteria, efficiency and robustness, complementary to selectivity, allowing us to choose between multipolar configurations. Thus, according to the weighting applied to these criteria, we developed an optimization algorithm to determine the optimal configuration as a function of the target zone, fiber diameter and the stimulation duration for a typical rectangular pulse. Experiments on animal model allowed us to evaluate the effectiveness and genericness of the method. This work was performed as part of a larger project on vagus nerve stimulation (INTENSE project) in which one of the applications focused on the treatment of cardiac disorders. The main objective was to selectively activate a specific population of nerve fibers to improve therapy and decrease side effects. In a second contribution, numerical simulations were used to investigate the combination of multipolar configurations and the prepulses technique, in order to obtain fiber recruitment in a spatially reverse order. The main objective was to achieve both spatial and fiber diameter selectivity. Expected clinical perspectives of this work are the reduction of fatigue related to a prolonged use of stimulation and the reduction of side effects. Within the framework of the INTENSE project, the second application investigated vagus nerve stimulation as a therapy for morbid obesity. Activation of target axons related to gastric functions requires a significant amount of charge injection. Several studies suggest that non-rectangular waveforms can activate axons of the peripheral nervous system with a reduced amount of charge compared to the reference rectangular pulse shape. Our last contribution focuses on the experimental study and the modeling of these complex waveforms. The modeling approach, if performed properly and while bearing in mind its limits, provides a relevant and even indispensable analysis tool for the clinical adjustment of neuroprostheses.
33

Glucose Sensing and Differentiating Systems with Organic Electrochemical Neurons : A Future Outlook for Type 2 Diabetes / Detektion och urskiljning av glukoshalter med organiska elektrokemiska neuroner

Ziske, Sophie January 2024 (has links)
In recent years great advances in the field of biomedical engineering and organic electronics have been achieved. One promising application would be the regulation of blood glucose concentration in type 2 diabetes patients. This application would eliminate medication and would improve the standard of life. To achieve this goal a system is needed which receives information about the glucose concentration and reacts upon it. This output reaction could then be used to stimulate the body's own glucose regulation mechanisms. This thesis combined a glucose sensor with an artificial neuron to take the first step towards such a system. Two different artificial neurons, the Axon-Hillock neuron and the astable multivibrator, were characterized and examined upon their usability. The Axon-Hillock, build with organic electrochemical transistors, revealed that it could be applied for both regulating high and low blood glucose concentrations. The astable multivibrator, build with silicon-based transistors, was not as functional as the Axon-Hillock neuron but with more development it could become as good. The placement of the glucose sensor in the astable multivibrator circuit is essential parameter to consider. The results demonstrate that the examined system is functional and could become a part of a larger closed-loop system. Future tests on an animal model may demonstrate its viability as a treatment for type 2 diabetes.

Page generated in 0.1114 seconds