• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Testing of the Valence Multipole Model OH Potential For Use in Molecular Dynamics Simulation

Andros, Charles Stephen 01 October 2017 (has links)
Here we describe the fitting and testing, via molecular dynamics simulation, of a bond-order potential for water with a unique force field parameterization. Most potentials for water, including some bond-order (reactive) potentials, are based on a traditional, many-body decomposition to describe water's structure with bond stretch, angle bend, electrostatics, and non-bonded terms. Our model uses an expanded version of the Bond Valence Model, the Valence Multipole Model, to describe all aspects of molecular structure using multibody, bond-order terms. Prior work successfully related these multibody, bond order terms to energy, provided the structures were close to equilibrium. The success of this equilibrium energy model demonstrated the plausibility of adapting its parameterization to a molecular dynamics force field. Further, we present extensive testing of ab initio methods to show that the ab initio data we obtained, using the CCSD(t)/cc-pwCVTZ level of theory, to augment the fitting set of our parameters is of the highest quality currently available for the OH system. While the force field is not yet finished, the model has demonstrated remarkable improvement since its initial testing. The test results and the insights gleaned from them have brought us significantly closer to adapting our unique parametrization to a fully functional molecular dynamics force field. Once the water potential is finished, it is our intent to develop and expand the Valence Multipole Model into a fully reactive alternative to CLAYFF, a non-reactive potential typically used to simulate fluid interfaces with clays and other minerals.

Page generated in 0.0731 seconds