• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow batteries : Status and potential

Dumancic, Dominik January 2011 (has links)
New ideas and solutions are necessary to face challenges in the electricity industry. The application of electricity storage systems (ESS) can improve the quality and stability of the existing electricity network. ESS can be used for peak shaving, instead of installing new generation or transmission units, renewable energy time-shift and many other services. There are few ESS technologies existing today: mechanical, electrical and electrochemical storage systems. Flow batteries are electrochemical storage systems which use electrolyte that is stored in a tank separated from the battery cell. Electrochemistry is very important to understand how a flow battery functions and how it stores electric energy. The functioning of a flow battery is based on reduction and oxidation reactions in the cell. To estimate the voltage of a cell the Nernst equation is used. It tells how the half-cell potential changes depending on the change of concentration of a substance involved in an oxidation or reduction reaction. The first flow battery was invented in the 1880’s, but was forgotten for a long time. Further development was revived in the 1950’s and 1970’s. A flow battery consists of two parallel electrodes separated by an ion exchange membrane, forming two half-cells. The electro-active materials are stored externally in an electrolyte and are introduced into the device only during operation. The vanadium redox battery (VRB) is based on the four possible oxidation states of vanadium and has a standard potential of 1.23 V. Full ionic equations of the VRB include protons, sulfuric acid and the corresponding salts. The capital cost of a VRB is approximately 426 $/kW and 100 $/kWh. Other flow batteries are polysulfide-bromine, zinc bromine, vanadium-bromine, iron-chromium, zinc-cerium, uranium, neptunium and soluble lead-acid redox flow batteries. Flow batteries have long cycle life and quick response times, but are complicated in comparison with other batteries. / Nya idéer och lösningar är nödvändiga för att möta utmaningarna i elbranschen. Användningen av elektriskt lagringssystem (ESS) kan förbättra kvalitén och stabiliteten av det nuvarande elnätet. ESS kan användas till toppbelastningsutjämning, istället för att installera nya produktions eller kraft överförnings enheter, förnybar energi tidsförskjutning och många andra tjänster. I dagsläget finns det få olika ESS: Mekaniska, elektriska och elektrokemiska lagringssystem. Flödesbatterier tillhör kategorin elektrokemiska lagringssystem som använder sig utav elektrolyt som är lagrad i en tank separerad från battericellen. För att kunna förstå hur flödesbatteriernas funktioner och på vilket sätt som dem lagrar elektriskt energi är det viktigt att kunna elektrokemi. Flödesbatteriernas funktion är baserad på reduktions och oxidations reaktioner i cellen. Nernsts ekvation används för att kunna uppskatta voltantalet i en cell. Nernsts ekvation säger hur halvcell potentialen ändras beroende av ändringen av koncentrationen av ämnet involverat i oxidations eller reduktions reaktionen. Det första flödesbatteriet uppfanns 1880-talet, men blev bortglömt under en lång tid. Vidare utveckling förnyades under 1950 och 1970-talet. Ett flödesbatteri består utav två parallella elektroder som är separerade utav ett jonbytes membran vilket formar två halvceller. Dem elektroaktiva materialen är lagrade externt i elektrolyt och är införs bara i anordningen under användning. Vanadium redox batteriet (VRB) är baserat på dem fyra möjliga oxidations tillstånden av vanadium och har en standard potential på 1.23 V. Fullt joniska ekvationer av VRB inkluderar protoner, svavelsyra och deras motsvarande salter. Kapitalkostnaden av ett VRB är ungefär 426 $/kW och 100 $/kWh. Det finna andra flödesbatterier som är polysulfide-brom, zink-brom, vanadium-brom, järn-krom, uran, neptunium och löslig blysyre redox flödesbatterier. Flödesbatterier har en lång omloppstid samt en snabb svarstid men är komplicerade jämfört med andra batterier.
2

Utvärdering av labpilot - flödesbatteri : Experimentell studie

Larsson, Donny, Andersson, Henrik January 2012 (has links)
Results have shown that flow batteries may be a solution in the future as an effective and environmental friendly method to an energy storage system (ESS). The technology is reliable and has a high efficiency that comes with low energy losses and a long lifetime. The range of possible fields is suitable for cutting energy peaks in the power grid, by always have a ready and available energy storage that balances the production. By comparing the advantages of flow batteries with conventional batteries it is mainly the fact that they can conserve energy for a long time without being self-discharged thanks to that the storage capacity is in principle endless and limited by the size of the electrolytes tanks that makes them a great energy storage system. The batteries won’t take any damage or decrease in performance when charging or discharging it or if you exhausts it to 100 % and leave it discharged for a long time. The only disadvantages with flow batteries are that they are built upon an advanced design and are built of components made of expensive materials. The main objective of this thesis is to develop an experimental basis for assessing a small pilot module of a flow battery with respect to how different concentrations of salts, flow rates and different currents/voltages affect the performance of the battery. We start by performing the experiment with a polymeric ion exchange membrane and see what values and the advantages and disadvantages it entails.
3

Vanadové články jako zdroje a akumulátory energie / Vanadium cells as a source and storage of energy

Langr, Pavel January 2015 (has links)
This semestral thesis deals with problematics of redox flow batteries, especially vanadium batteries. The first part is focused on describing basic terms, describes redox batteries and explains chemical processes. It also deals with vanadium batteries properties and construction. The second part of the thesis describes diagnostic method of spectroscopy, which seems to be very perspective for examining attributes of vanadium redax batteries.
4

Matematický popis VRB baterie / Mathematical description of VRB battery

Korniak, Daniel January 2013 (has links)
This work is in the introduction focused on the introduction of technologies for electrical energy storage, their description and capturing the main advantages and disadvantages. After this capture follows comparison of the various technologies in terms of efficiency , discharge time and the price for1 kWh . Following section focuses on electrochemical model VRB batteries , which describes the equations describing the behavior of a battery depending on the chemical an electrical properties . In the penultimate chapter, I introduced the language of object- oriented modeling language Modelica and the most common programs based on it, including a short introduction for modeling in MathModelica. The last part deals with the modeling of specific VRB battery, which we have at the faculty.

Page generated in 0.0464 seconds