• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting

Johnson, Neil G. 22 June 2008 (has links) (PDF)
The quadrotor helicopter is a unique flying vehicle which uses the thrust from four motors to provide hover flight capability. The uncoupled nature of the longitudinal and lateral axes and its ability to support large payloads with respect to its size make it an attractive vehicle for autonomous vehicle research. In this thesis, the quadrotor is modeled based on first principles and a proportional-derivative control method is applied for attitude stabilization and position control. A unique means of using an optic flow sensor for velocity and position estimation in an indoor setting is presented with flight results. Reliable hover flight and hallway following capabilities are exhibited in GPS-denied indoor flight using only onboard sensors. Attitude angles can be reliably estimated in the short run by integrating the angular rates from MEMS gyros, but noise on the signal leads to drift which renders the measurement unsuitable to attitude estimation. Typical methods of providing vector attitude corrections such as accelerometers and magnetometers have inherent weaknesses on hovering vehicles. Thus, an additional vector measurement is necessary to correct attitude readings for long-term flights. Two methods of using image processing to determine vanishing points in a hallway are demonstrated. The more promising of the two uses a Hough transform to detect lines in the image and forms a histogram of the intersections to detect likely vanishing point candidates. Once the vanishing point is detected, it acts as a vector measurement to correct attitude estimates on the quadrotor vehicle. Results using onboard vision to estimate heading are demonstrated on a test stand. Together, these capabilities improve the utility of the quadrotor platform for flight without the need of any external sensing capability.
2

Método de extração da posição de máquinas agrícolas por visão computacional baseado em redes pulsadas e ponto de fuga / Method for position extraction of agricultural machine based on pulsed neural networks and vanishing point

Neris, Luciano de Oliveira 07 April 2008 (has links)
A redução de custos e a melhora do processo produtivo são essenciais para o aumento da rentabilidade e da produtividade das áreas agrícolas. O investimento em tecnologia se torna, portanto, fundamental em um mundo cada vez mais competitivo. Neste trabalho é apresentado o desenvolvimento de um método de extração da posição de máquinas agrícolas, em relação às linhas de cultivo, a partir do processamento de imagens fornecidas por uma câmera de vídeo colorida. A posição extraída é a informação básica utilizada em um sistema de direcionamento automático, permitindo determinar quais ações devam ser tomadas para manter a máquina em sua trajetória. O correto posicionamento da máquina sobre as linhas de cultivo melhora o processo de pulverização, ocasionando a redução de custos e o aumento da produtividade da área. O método proposto está embasado nos conceitos de ponto de fuga e busca antecipada. Essas técnicas permitiram simplificar o processamento das imagens e conseqüentemente a redução do tempo de processamento. Essas características, aliadas ao correto posicionamento da câmera, devem permitir que o método proposto possa ser utilizado no controle de máquinas agrícolas que operam em grandes velocidades como os pulverizadores. / Cost reduction and productive process improvement are essential to increase yield in agricultural areas. Investments in technology become, therefore, important in a competitive world. This work presents a novel approach for extracting agricultural machine position, with respect to crop rows, processing images captured by a color video camera. The correct machine positioning in crop rows can improve agricultural processes such as spraying, decreasing the costs and increasing the area yield. The proposed method is based on the look-ahead and vanishing points techniques. These techniques allow the reduction of the algorithm complexity and, therefore, the reduction of the processing time. These characteristics added to the camera position may allow the system to control agricultural machines that run at high speeds, such as sprayers.
3

Room layout estimation on mobile devices

Angladon, Vincent 27 April 2018 (has links) (PDF)
Room layout generation is the problem of generating a drawing or a digital model of an existing room from a set of measurements such as laser data or images. The generation of floor plans can find application in the building industry to assess the quality and the correctness of an ongoing construction w.r.t. the initial model, or to quickly sketch the renovation of an apartment. Real estate industry can rely on automatic generation of floor plans to ease the process of checking the livable surface and to propose virtual visits to prospective customers. As for the general public, the room layout can be integrated into mixed reality games to provide a better immersiveness experience, or used in other related augmented reality applications such room redecoration. The goal of this industrial thesis (CIFRE) is to investigate and take advantage of the state-of-the art mobile devices in order to automate the process of generating room layouts. Nowadays, modern mobile devices usually come a wide range of sensors, such as inertial motion unit (IMU), RGB cameras and, more recently, depth cameras. Moreover, tactile touchscreens offer a natural and simple way to interact with the user, thus favoring the development of interactive applications, in which the user can be part of the processing loop. This work aims at exploiting the richness of such devices to address the room layout generation problem. The thesis has three major contributions. We first show how the classic problem of detecting vanishing points in an image can benefit from an a-priori given by the IMU sensor. We propose a simple and effective algorithm for detecting vanishing points relying on the gravity vector estimated by the IMU. A new public dataset containing images and the relevant IMU data is introduced to help assessing vanishing point algorithms and foster further studies in the field. As a second contribution, we explored the state of-the-art of real-time localization and map optimization algorithms for RGB-D sensors. Real-time localization is a fundamental task to enable augmented reality applications, and thus it is a critical component when designing interactive applications. We propose an evaluation of existing algorithms for the common desktop set-up in order to be employed on a mobile device. For each considered method, we assess the accuracy of the localization as well as the computational performances when ported on a mobile device. Finally, we present a proof of concept of application able to generate the room layout relying on a Project Tango tablet equipped with an RGB-D sensor. In particular, we propose an algorithm that incrementally processes and fuses the 3D data provided by the sensor in order to obtain the layout of the room. We show how our algorithm can rely on the user interactions in order to correct the generated 3D model during the acquisition process.
4

Método de extração da posição de máquinas agrícolas por visão computacional baseado em redes pulsadas e ponto de fuga / Method for position extraction of agricultural machine based on pulsed neural networks and vanishing point

Luciano de Oliveira Neris 07 April 2008 (has links)
A redução de custos e a melhora do processo produtivo são essenciais para o aumento da rentabilidade e da produtividade das áreas agrícolas. O investimento em tecnologia se torna, portanto, fundamental em um mundo cada vez mais competitivo. Neste trabalho é apresentado o desenvolvimento de um método de extração da posição de máquinas agrícolas, em relação às linhas de cultivo, a partir do processamento de imagens fornecidas por uma câmera de vídeo colorida. A posição extraída é a informação básica utilizada em um sistema de direcionamento automático, permitindo determinar quais ações devam ser tomadas para manter a máquina em sua trajetória. O correto posicionamento da máquina sobre as linhas de cultivo melhora o processo de pulverização, ocasionando a redução de custos e o aumento da produtividade da área. O método proposto está embasado nos conceitos de ponto de fuga e busca antecipada. Essas técnicas permitiram simplificar o processamento das imagens e conseqüentemente a redução do tempo de processamento. Essas características, aliadas ao correto posicionamento da câmera, devem permitir que o método proposto possa ser utilizado no controle de máquinas agrícolas que operam em grandes velocidades como os pulverizadores. / Cost reduction and productive process improvement are essential to increase yield in agricultural areas. Investments in technology become, therefore, important in a competitive world. This work presents a novel approach for extracting agricultural machine position, with respect to crop rows, processing images captured by a color video camera. The correct machine positioning in crop rows can improve agricultural processes such as spraying, decreasing the costs and increasing the area yield. The proposed method is based on the look-ahead and vanishing points techniques. These techniques allow the reduction of the algorithm complexity and, therefore, the reduction of the processing time. These characteristics added to the camera position may allow the system to control agricultural machines that run at high speeds, such as sprayers.
5

Tracking of railroads for autonomous guidance of UAVs : using Vanishing Point detection

Clerc, Anthony January 2018 (has links)
UAVs have gained in popularity and the number of applications has soared over the past years, ranging from leisure to commercial activities. This thesis is discussing specifically railroad applications, which is a domain rarely explored. Two different aspects are analysed. While developing a new application or migrating a ground-based system to UAV platform, the different challenges encountered are often unknown. Therefore, this thesis highlights the most important ones to take into consideration during the development process. From a more technical aspect, the implementation of autonomous guidance for UAVs over railroads using vanishing point extraction is studied. Two different algorithms are presented and compared, the first one is using line extraction method whereas the second uses joint activities of Gabor filters. The results demonstrate that the applied methodologies provide good results and that a significant difference exists between both algorithms in terms of computation time. A second implementation tackling the detection of railway topologies to enable the use on multiple rail road configurations is discussed. A first technique is presented using exclusively vanishing points for the detection, however, the results for complex images are not satisfactory. Therefore, a second method is studied using line characteristics on top of the previous algorithm. This second implementation has proven to give good results.
6

Parametrizace bodů a čar pomocí paralelních souřadnic pro Houghovu transformaci / Point and Line Parameterizations Using Parallel Coordinates for Hough Transform

Juránková, Markéta Unknown Date (has links)
Tato dizertační práce se zaměřuje na použití paralelních souřadnic pro parametrizaci čar a bodů. Paralelní souřadný systém má souřadnicové osy vzájemně rovnoběžné. Bod ve dvourozměrném prostoru je v paralelních souřadnicích zobrazen jako přímka a přímka jako bod. Toho je možné využít pro Houghovu transformaci - metodu, při které body zájmu hlasují v prostoru parametrů pro danou hypotézu. Parametrizace pomocí paralelních souřadnic vyžaduje pouze rasterizaci úseček, a proto je velmi rychlá a přesná. V práci je tato parameterizace demonstrována na detekci maticových kódů a úběžníků.
7

A window to the past through modern urban environments: Developing a photogrammetric workflow for the orientation parameter estimation of historical images

Maiwald, Ferdinand 05 October 2022 (has links)
The ongoing process of digitization in archives is providing access to ever-increasing historical image collections. In many of these repositories, images can typically be viewed in a list or gallery view. Due to the growing number of digitized objects, this type of visualization is becoming increasingly complex. Among other things, it is difficult to determine how many photographs show a particular object and spatial information can only be communicated via metadata. Within the scope of this thesis, research is conducted on the automated determination and provision of this spatial data. Enhanced visualization options make this information more eas- ily accessible to scientists as well as citizens. Different types of visualizations can be presented in three-dimensional (3D), Virtual Reality (VR) or Augmented Reality (AR) applications. However, applications of this type require the estimation of the photographer’s point of view. In the photogrammetric context, this is referred to as estimating the interior and exterior orientation parameters of the camera. For determination of orientation parameters for single images, there are the established methods of Direct Linear Transformation (DLT) or photogrammetric space resection. Using these methods requires the assignment of measured object points to their homologue image points. This is feasible for single images, but quickly becomes impractical due to the large amount of images available in archives. Thus, for larger image collections, usually the Structure-from-Motion (SfM) method is chosen, which allows the simultaneous estimation of the interior as well as the exterior orientation of the cameras. While this method yields good results especially for sequential, contemporary image data, its application to unsorted historical photographs poses a major challenge. In the context of this work, which is mainly limited to scenarios of urban terrestrial photographs, the reasons for failure of the SfM process are identified. In contrast to sequential image collections, pairs of images from different points in time or from varying viewpoints show huge differences in terms of scene representation such as deviations in the lighting situation, building state, or seasonal changes. Since homologue image points have to be found automatically in image pairs or image sequences in the feature matching procedure of SfM, these image differences pose the most complex problem. In order to test different feature matching methods, it is necessary to use a pre-oriented historical dataset. Since such a benchmark dataset did not exist yet, eight historical image triples (corresponding to 24 image pairs) are oriented in this work by manual selection of homologue image points. This dataset allows the evaluation of frequently new published methods in feature matching. The initial methods used, which are based on algorithmic procedures for feature matching (e.g., Scale Invariant Feature Transform (SIFT)), provide satisfactory results for only few of the image pairs in this dataset. By introducing methods that use neural networks for feature detection and feature description, homologue features can be reliably found for a large fraction of image pairs in the benchmark dataset. In addition to a successful feature matching strategy, determining camera orientation requires an initial estimate of the principal distance. Hence for historical images, the principal distance cannot be directly determined as the camera information is usually lost during the process of digitizing the analog original. A possible solution to this problem is to use three vanishing points that are automatically detected in the historical image and from which the principal distance can then be determined. The combination of principal distance estimation and robust feature matching is integrated into the SfM process and allows the determination of the interior and exterior camera orientation parameters of historical images. Based on these results, a workflow is designed that allows archives to be directly connected to 3D applications. A search query in archives is usually performed using keywords, which have to be assigned to the corresponding object as metadata. Therefore, a keyword search for a specific building also results in hits on drawings, paintings, events, interior or detailed views directly connected to this building. However, for the successful application of SfM in an urban context, primarily the photographic exterior view of the building is of interest. While the images for a single building can be sorted by hand, this process is too time-consuming for multiple buildings. Therefore, in collaboration with the Competence Center for Scalable Data Services and Solutions (ScaDS), an approach is developed to filter historical photographs by image similarities. This method reliably enables the search for content-similar views via the selection of one or more query images. By linking this content-based image retrieval with the SfM approach, automatic determination of camera parameters for a large number of historical photographs is possible. The developed method represents a significant improvement over commercial and open-source SfM standard solutions. The result of this work is a complete workflow from archive to application that automatically filters images and calculates the camera parameters. The expected accuracy of a few meters for the camera position is sufficient for the presented applications in this work, but offer further potential for improvement. A connection to archives, which will automatically exchange photographs and positions via interfaces, is currently under development. This makes it possible to retrieve interior and exterior orientation parameters directly from historical photography as metadata which opens up new fields of research.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Initial parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.6 Dense reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.7 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Generation of a benchmark dataset using historical photographs for the evaluation of feature matching methods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Image differences based on digitization and image medium . . . . . . . 30 2.1.2 Image differences based on different cameras and acquisition technique 31 2.1.3 Object differences based on different dates of acquisition . . . . . . . . 31 2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 The image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Comparison of different feature detection and description methods . . . . . . 35 2.4.1 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . . . 36 2.4.2 Maximally Stable Extremal Region Detector (MSER) . . . . . . . . . 36 2.4.3 Radiation-invariant Feature Transform (RIFT) . . . . . . . . . . . . . 36 2.4.4 Feature matching and outlier removal . . . . . . . . . . . . . . . . . . 36 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Photogrammetry as a link between image repository and 4D applications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IX Contents 3.2 Multimodal access on repositories . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Conventional access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Virtual access using online collections . . . . . . . . . . . . . . . . . . 48 3.2.3 Virtual museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Workflow and access strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Browser access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 VR and AR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 An adapted Structure-from-Motion Workflow for the orientation of historical images 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Historical images for 3D reconstruction . . . . . . . . . . . . . . . . . 72 4.2.2 Algorithmic Feature Detection and Matching . . . . . . . . . . . . . . 73 4.2.3 Feature Detection and Matching using Convolutional Neural Networks 74 4.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Step 1: Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 Step 2.1: Feature Detection and Matching . . . . . . . . . . . . . . . . 78 4.4.3 Step 2.2: Vanishing Point Detection and Principal Distance Estimation 80 4.4.4 Step 3: Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.5 Comparison with Three Other State-of-the-Art SfM Workflows . . . . 81 4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Fully automated pose estimation of historical images 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Feature Detection and Matching . . . . . . . . . . . . . . . . . . . . . 101 5.3 Data Preparation: Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2.1 Layer Extraction Approach (LEA) . . . . . . . . . . . . . . . 104 5.3.2.2 Attentive Deep Local Features (DELF) Approach . . . . . . 105 5.3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Camera Pose Estimation of Historical Images Using Photogrammetric Methods 110 5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.1.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1.2 Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4.2.1 Feature Detection and Matching . . . . . . . . . . . . . . . . 115 5.4.2.2 Geometric Verification and Camera Pose Estimation . . . . . 116 5.4.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Related publications 129 6.1 Photogrammetric analysis of historical image repositores for virtual reconstruction in the field of digital humanities . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Feature matching of historical images based on geometry of quadrilaterals . . 131 6.3 Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history . . . . . . . . . . 132 6.4 An automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Software and content design of a browser-based mobile 4D VR application to explore historical city architecture . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Synthesis 135 7.1 Summary of the developed workflows . . . . . . . . . . . . . . . . . . . . . . . 135 7.1.1 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.2 Accuracy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.3 Transfer of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Developments and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Appendix 149 8.1 Setup for the feature matching evaluation . . . . . . . . . . . . . . . . . . . . 149 8.2 Transformation from COLMAP coordinate system to OpenGL . . . . . . . . 150 References 151 List of Figures 165 List of Tables 167 List of Abbreviations 169 / Der andauernde Prozess der Digitalisierung in Archiven ermöglicht den Zugriff auf immer größer werdende historische Bildbestände. In vielen Repositorien können die Bilder typischerweise in einer Listen- oder Gallerieansicht betrachtet werden. Aufgrund der steigenden Zahl an digitalisierten Objekten wird diese Art der Visualisierung zunehmend unübersichtlicher. Es kann u.a. nur noch schwierig bestimmt werden, wie viele Fotografien ein bestimmtes Motiv zeigen. Des Weiteren können räumliche Informationen bisher nur über Metadaten vermittelt werden. Im Rahmen der Arbeit wird an der automatisierten Ermittlung und Bereitstellung dieser räumlichen Daten geforscht. Erweiterte Visualisierungsmöglichkeiten machen diese Informationen Wissenschaftlern sowie Bürgern einfacher zugänglich. Diese Visualisierungen können u.a. in drei-dimensionalen (3D), Virtual Reality (VR) oder Augmented Reality (AR) Anwendungen präsentiert werden. Allerdings erfordern Anwendungen dieser Art die Schätzung des Standpunktes des Fotografen. Im photogrammetrischen Kontext spricht man dabei von der Schätzung der inneren und äußeren Orientierungsparameter der Kamera. Zur Bestimmung der Orientierungsparameter für Einzelbilder existieren die etablierten Verfahren der direkten linearen Transformation oder des photogrammetrischen Rückwärtsschnittes. Dazu muss eine Zuordnung von gemessenen Objektpunkten zu ihren homologen Bildpunkten erfolgen. Das ist für einzelne Bilder realisierbar, wird aber aufgrund der großen Menge an Bildern in Archiven schnell nicht mehr praktikabel. Für größere Bildverbände wird im photogrammetrischen Kontext somit üblicherweise das Verfahren Structure-from-Motion (SfM) gewählt, das die simultane Schätzung der inneren sowie der äußeren Orientierung der Kameras ermöglicht. Während diese Methode vor allem für sequenzielle, gegenwärtige Bildverbände gute Ergebnisse liefert, stellt die Anwendung auf unsortierten historischen Fotografien eine große Herausforderung dar. Im Rahmen der Arbeit, die sich größtenteils auf Szenarien stadträumlicher terrestrischer Fotografien beschränkt, werden zuerst die Gründe für das Scheitern des SfM Prozesses identifiziert. Im Gegensatz zu sequenziellen Bildverbänden zeigen Bildpaare aus unterschiedlichen zeitlichen Epochen oder von unterschiedlichen Standpunkten enorme Differenzen hinsichtlich der Szenendarstellung. Dies können u.a. Unterschiede in der Beleuchtungssituation, des Aufnahmezeitpunktes oder Schäden am originalen analogen Medium sein. Da für die Merkmalszuordnung in SfM automatisiert homologe Bildpunkte in Bildpaaren bzw. Bildsequenzen gefunden werden müssen, stellen diese Bilddifferenzen die größte Schwierigkeit dar. Um verschiedene Verfahren der Merkmalszuordnung testen zu können, ist es notwendig einen vororientierten historischen Datensatz zu verwenden. Da solch ein Benchmark-Datensatz noch nicht existierte, werden im Rahmen der Arbeit durch manuelle Selektion homologer Bildpunkte acht historische Bildtripel (entspricht 24 Bildpaaren) orientiert, die anschließend genutzt werden, um neu publizierte Verfahren bei der Merkmalszuordnung zu evaluieren. Die ersten verwendeten Methoden, die algorithmische Verfahren zur Merkmalszuordnung nutzen (z.B. Scale Invariant Feature Transform (SIFT)), liefern nur für wenige Bildpaare des Datensatzes zufriedenstellende Ergebnisse. Erst durch die Verwendung von Verfahren, die neuronale Netze zur Merkmalsdetektion und Merkmalsbeschreibung einsetzen, können für einen großen Teil der historischen Bilder des Benchmark-Datensatzes zuverlässig homologe Bildpunkte gefunden werden. Die Bestimmung der Kameraorientierung erfordert zusätzlich zur Merkmalszuordnung eine initiale Schätzung der Kamerakonstante, die jedoch im Zuge der Digitalisierung des analogen Bildes nicht mehr direkt zu ermitteln ist. Eine mögliche Lösung dieses Problems ist die Verwendung von drei Fluchtpunkten, die automatisiert im historischen Bild detektiert werden und aus denen dann die Kamerakonstante bestimmt werden kann. Die Kombination aus Schätzung der Kamerakonstante und robuster Merkmalszuordnung wird in den SfM Prozess integriert und erlaubt die Bestimmung der Kameraorientierung historischer Bilder. Auf Grundlage dieser Ergebnisse wird ein Arbeitsablauf konzipiert, der es ermöglicht, Archive mittels dieses photogrammetrischen Verfahrens direkt an 3D-Anwendungen anzubinden. Eine Suchanfrage in Archiven erfolgt üblicherweise über Schlagworte, die dann als Metadaten dem entsprechenden Objekt zugeordnet sein müssen. Eine Suche nach einem bestimmten Gebäude generiert deshalb u.a. Treffer zu Zeichnungen, Gemälden, Veranstaltungen, Innen- oder Detailansichten. Für die erfolgreiche Anwendung von SfM im stadträumlichen Kontext interessiert jedoch v.a. die fotografische Außenansicht des Gebäudes. Während die Bilder für ein einzelnes Gebäude von Hand sortiert werden können, ist dieser Prozess für mehrere Gebäude zu zeitaufwendig. Daher wird in Zusammenarbeit mit dem Competence Center for Scalable Data Services and Solutions (ScaDS) ein Ansatz entwickelt, um historische Fotografien über Bildähnlichkeiten zu filtern. Dieser ermöglicht zuverlässig über die Auswahl eines oder mehrerer Suchbilder die Suche nach inhaltsähnlichen Ansichten. Durch die Verknüpfung der inhaltsbasierten Suche mit dem SfM Ansatz ist es möglich, automatisiert für eine große Anzahl historischer Fotografien die Kameraparameter zu bestimmen. Das entwickelte Verfahren stellt eine deutliche Verbesserung im Vergleich zu kommerziellen und open-source SfM Standardlösungen dar. Das Ergebnis dieser Arbeit ist ein kompletter Arbeitsablauf vom Archiv bis zur Applikation, der automatisch Bilder filtert und diese orientiert. Die zu erwartende Genauigkeit von wenigen Metern für die Kameraposition sind ausreichend für die dargestellten Anwendungen in dieser Arbeit, bieten aber weiteres Verbesserungspotential. Eine Anbindung an Archive, die über Schnittstellen automatisch Fotografien und Positionen austauschen soll, befindet sich bereits in der Entwicklung. Dadurch ist es möglich, innere und äußere Orientierungsparameter direkt von der historischen Fotografie als Metadaten abzurufen, was neue Forschungsfelder eröffnet.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Initial parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.6 Dense reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.7 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Generation of a benchmark dataset using historical photographs for the evaluation of feature matching methods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Image differences based on digitization and image medium . . . . . . . 30 2.1.2 Image differences based on different cameras and acquisition technique 31 2.1.3 Object differences based on different dates of acquisition . . . . . . . . 31 2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 The image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Comparison of different feature detection and description methods . . . . . . 35 2.4.1 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . . . 36 2.4.2 Maximally Stable Extremal Region Detector (MSER) . . . . . . . . . 36 2.4.3 Radiation-invariant Feature Transform (RIFT) . . . . . . . . . . . . . 36 2.4.4 Feature matching and outlier removal . . . . . . . . . . . . . . . . . . 36 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Photogrammetry as a link between image repository and 4D applications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IX Contents 3.2 Multimodal access on repositories . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Conventional access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Virtual access using online collections . . . . . . . . . . . . . . . . . . 48 3.2.3 Virtual museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Workflow and access strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Browser access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 VR and AR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 An adapted Structure-from-Motion Workflow for the orientation of historical images 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Historical images for 3D reconstruction . . . . . . . . . . . . . . . . . 72 4.2.2 Algorithmic Feature Detection and Matching . . . . . . . . . . . . . . 73 4.2.3 Feature Detection and Matching using Convolutional Neural Networks 74 4.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Step 1: Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 Step 2.1: Feature Detection and Matching . . . . . . . . . . . . . . . . 78 4.4.3 Step 2.2: Vanishing Point Detection and Principal Distance Estimation 80 4.4.4 Step 3: Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.5 Comparison with Three Other State-of-the-Art SfM Workflows . . . . 81 4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Fully automated pose estimation of historical images 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Feature Detection and Matching . . . . . . . . . . . . . . . . . . . . . 101 5.3 Data Preparation: Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2.1 Layer Extraction Approach (LEA) . . . . . . . . . . . . . . . 104 5.3.2.2 Attentive Deep Local Features (DELF) Approach . . . . . . 105 5.3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Camera Pose Estimation of Historical Images Using Photogrammetric Methods 110 5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.1.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1.2 Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4.2.1 Feature Detection and Matching . . . . . . . . . . . . . . . . 115 5.4.2.2 Geometric Verification and Camera Pose Estimation . . . . . 116 5.4.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Related publications 129 6.1 Photogrammetric analysis of historical image repositores for virtual reconstruction in the field of digital humanities . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Feature matching of historical images based on geometry of quadrilaterals . . 131 6.3 Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history . . . . . . . . . . 132 6.4 An automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Software and content design of a browser-based mobile 4D VR application to explore historical city architecture . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Synthesis 135 7.1 Summary of the developed workflows . . . . . . . . . . . . . . . . . . . . . . . 135 7.1.1 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.2 Accuracy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.3 Transfer of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Developments and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Appendix 149 8.1 Setup for the feature matching evaluation . . . . . . . . . . . . . . . . . . . . 149 8.2 Transformation from COLMAP coordinate system to OpenGL . . . . . . . . 150 References 151 List of Figures 165 List of Tables 167 List of Abbreviations 169
8

Room layout estimation on mobile devices / Création de plans d’intérieur avec une tablette

Angladon, Vincent 27 April 2018 (has links)
L’objectif de cette thèse CIFRE est d’étudier et de tirer parti des derniers appareils mobiles du marché pour générer des 3D des pièces observées. De nous jours, ces appareils intègrent un grand nombre de capteurs, tel que des capteurs inertiels, des cameras RGB, et depuis peu, des capteurs de profondeur. Sans compter la présence de l’écran tactile qui offre une interface pour interagir avec l’utilisateur. Un cas d’usage typique de ces modèles 3D est la génération de plans d’intérieur, ou de fichiers CAO 3D (conception assistée par ordinateur) appliques a l’industrie du bâtiment. Le modèle permet d’esquisser les travaux de rénovation d’un appartement, ou d’évaluer la fidélité d’un chantier en cours avec le modèle initial. Pour le secteur de l’immobilier, la génération automatique de plans et modèles 3D peut faciliter le calcul de la surface habitable et permet de proposer des visites virtuelles a d’éventuels acquéreurs. Concernant le grand public, ces modèles 3D peuvent être intégrés a des jeux en réalité mixte afin d’offrir une expérience encore plus immersive, ou pour des applications de réalité augmentée, telles que la décoration d’intérieur. La thèse a trois contributions principales. Nous commençons par montrer comment le problème classique de détection des points de fuite dans une image, peut être revisite pour tirer parti de l’utilisation de données inertielles. Nous proposons un algorithme simple et efficace de détection de points de fuite reposant sur l’utilisation du vecteur gravite obtenu via ces données. Un nouveau jeu de données contenant des photos avec des données inertielles est présenté pour l’évaluation d’algorithmes d’estimation de points de fuite et encourager les travaux ultérieurs dans cette direction. Dans une deuxième contribution, nous explorons les approches d’odométrie visuelle de l’état de l’art qui exploitent des capteurs de profondeur. Localiser l’appareil mobile en temps réel est fondamental pour envisager des applications reposant sur la réalité augmentée. Nous proposons une comparaison d’algorithmes existants développés en grande partie pour ordinateur de bureau, afin d’étudier si leur utilisation sur un appareil mobile est envisageable. Pour chaque approche considérée, nous évaluons la précision de la localisation et les performances en temps de calcul sur mobile. Enfin, nous présentons une preuve de concept d’application permettant de générer le plan d’une pièce, en utilisant une tablette du projet Tango, équipée d’un capteur RGB-D. Notre algorithme effectue un traitement incrémental des données 3D acquises au cours de l’observation de la pièce considérée. Nous montrons comment notre approche utilise les indications de l’utilisateur pour corriger pendant la capture le modèle de la pièce. / Room layout generation is the problem of generating a drawing or a digital model of an existing room from a set of measurements such as laser data or images. The generation of floor plans can find application in the building industry to assess the quality and the correctness of an ongoing construction w.r.t. the initial model, or to quickly sketch the renovation of an apartment. Real estate industry can rely on automatic generation of floor plans to ease the process of checking the livable surface and to propose virtual visits to prospective customers. As for the general public, the room layout can be integrated into mixed reality games to provide a better immersiveness experience, or used in other related augmented reality applications such room redecoration. The goal of this industrial thesis (CIFRE) is to investigate and take advantage of the state-of-the art mobile devices in order to automate the process of generating room layouts. Nowadays, modern mobile devices usually come a wide range of sensors, such as inertial motion unit (IMU), RGB cameras and, more recently, depth cameras. Moreover, tactile touchscreens offer a natural and simple way to interact with the user, thus favoring the development of interactive applications, in which the user can be part of the processing loop. This work aims at exploiting the richness of such devices to address the room layout generation problem. The thesis has three major contributions. We first show how the classic problem of detecting vanishing points in an image can benefit from an a-priori given by the IMU sensor. We propose a simple and effective algorithm for detecting vanishing points relying on the gravity vector estimated by the IMU. A new public dataset containing images and the relevant IMU data is introduced to help assessing vanishing point algorithms and foster further studies in the field. As a second contribution, we explored the state of-the-art of real-time localization and map optimization algorithms for RGB-D sensors. Real-time localization is a fundamental task to enable augmented reality applications, and thus it is a critical component when designing interactive applications. We propose an evaluation of existing algorithms for the common desktop set-up in order to be employed on a mobile device. For each considered method, we assess the accuracy of the localization as well as the computational performances when ported on a mobile device. Finally, we present a proof of concept of application able to generate the room layout relying on a Project Tango tablet equipped with an RGB-D sensor. In particular, we propose an algorithm that incrementally processes and fuses the 3D data provided by the sensor in order to obtain the layout of the room. We show how our algorithm can rely on the user interactions in order to correct the generated 3D model during the acquisition process.
9

Měření rychlosti automobilů z dohledové kamery / Speed Measurement of Vehicles from Surveillance Camera

Jaklovský, Samuel January 2018 (has links)
This master's thesis is focused on fully automatic calibration of traffic surveillance camera, which is used for speed measurement of passing vehicles. Thesis contains and describes theoretical information and algorithms related to this issue. Based on this information and algorithms, a comprehensive system design for automatic calibration and speed measurement was built. The proposed system has been successfully implemented. The implemented system is optimized to process the smallest portion of the video input for the automatic calibration of the camera. Calibration parameters are obtained after processing only two and half minutes of input video. The accuracy of the implemented system was evaluated on the dataset BrnoCompSpeed. The speed measurement error using the automatic calibration system is 8.15 km/h. The error is mainly caused by inaccurate scale acquisition, and when it is replaced by manually obtained scale, the error is reduced to 2.45 km/h. The speed measuring system itself has an error of only 1.62 km/h (evaluated using manual calibration parameters).
10

Dynamické rozpoznávání scény pro navigaci mobilního robotu / Dynamic Scene Understanding for Mobile Robot Navigation

Mikšík, Ondřej January 2012 (has links)
Diplomová práce se zabývá porozuměním dynamických scén pro navigaci mobilních robotů. V první části předkládáme nový přístup k "sebe-učícím" modelům - fůzi odhadu úběžníku cesty založeného na frekvenčním zpracování a pravděpodobnostních modelech využívající barvu pro segmentaci. Detekce úběžníku cesty je založena na odhadu dominantních orientací texturního toku, získáného pomocí banky Gaborových vlnek, a hlasování. Úběžník cesty poté definuje trénovací oblast, která se využívá k samostatnému učení barevných modelů. Nakonec, oblasti tvořící cestu jsou vybrány pomocí měření Mahalanobisovi vzdálenosti. Pár pravidel řeší situace, jako jsou mohutné stíny, přepaly a rychlost adaptivity. Kromě toho celý odhad úběžníku cesty je přepracován - vlnky jsou nahrazeny aproximacemi pomocí binárních blokových funkcí, což umožňuje efektivní filtraci pomocí integrálních obrazů. Nejužší hrdlo celého algoritmu bylo samotné hlasování, proto překládáme schéma, které nejdříve provede hrubý odhad úběžníku a následně jej zpřesní, čímž dosáhneme výrazně vyšší rychlosti (až 40x), zatímco přesnost se zhorší pouze o 3-5%. V druhé části práce předkládáme vyhlazovací filtr pro prostorovo-časovou konzistentnost predikcí, která je důležitá pro vyspělé systémy. Klíčovou částí filtru je nová metrika měřící podobnost mezi třídami, která rozlišuje mnohem lépe než standardní Euclidovská vzdálenost. Tato metrika může být použita k nejrůznějším úlohám v počítačovém vidění. Vyhlazovací filtr nejdříve odhadne optický tok, aby definoval lokální okolí. Toto okolí je použito k rekurzivní filtraci založené na podobnostní metrice. Celková přesnost předkládané metody měřená na pixelech, které nemají shodné predikce mezi původními daty a vyfiltrovanými, je téměř o 18% vyšší než u původních predikcí. Ačkoliv využíváme SHIM jako zdroj původních predikcí, algoritmus může být kombinován s kterýmkoliv jiným systémem (MRF, CRF,...), který poskytne predikce ve formě pravěpodobností. Předkládaný filtr představuje první krok na cestě k úplnému usuzování.

Page generated in 0.0522 seconds