• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vapor transport techniques for growing macroscopically uniform zinc oxide nanowires

Baker, Chad Allan 2009 August 1900 (has links)
ZnO nanowires were grown using carbothermal reduction and convective vapor phase transport in a tube furnace. Si <100> substrates that were 20 mm x 76.2 mm were sputter coated with 2 nm to 50 nm gold which formed nanoparticles on the order of 50 nm in diameter through a process of Ostwald ripening upon being heated. Growth temperatures were varied from 800ºC to 1000ºC, flow rates were varied from 24 sccm to 3300 sccm, and growth durations were varied from 8 minutes to 5 hours. Vapor phase Zn, CO, and CO2, produced by carbothermal reduction and suspended in an Ar atmosphere, were flowed over the Si substrates. The Au nanoparticles formed an eutectic alloy with Zn, causing them to become liquid nanodroplets which catalyzed vapor-liquid-solid nanowire growth. The nanowires were also synthesized by self-catalyzing vapor-solid growth in some cases. Using the tube furnace never resulted in more than 50% of the substrate being covered by nanowires. It was found that a bench-top furnace could achieve nearly 100% nanowire coverage by placing the 20 mm x 76.2 mm sample face down in a quartz boat less than 2 mm above the source powder. This was because minimizing the distance between the sample and the source powder was critical to achieve macroscopically uniform growth consistently. / text
2

Síntese de membranas zeolíticas (Mordenita/α-Alumina) utilizando os métodos de síntese hidrotérmica, Dip-Coating e transporte em fase vapor e avaliação na separação emulsão óleo/água.

SILVA, Fabiana Medeiros do Nascimento. 16 August 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-16T11:47:56Z No. of bitstreams: 1 FABIANA MEDEIROS DO NASCIMENTO SILVA - TESE (PPGEQ) 2017.pdf: 6622967 bytes, checksum: bfed827814b744a5e9e9e565d28f0682 (MD5) / Made available in DSpace on 2018-08-16T11:47:56Z (GMT). No. of bitstreams: 1 FABIANA MEDEIROS DO NASCIMENTO SILVA - TESE (PPGEQ) 2017.pdf: 6622967 bytes, checksum: bfed827814b744a5e9e9e565d28f0682 (MD5) Previous issue date: 2017 / Capes / O presente trabalho tem como objetivo geral sintetizar as membranas zeolíticas (Mordenita/α-alumina), utilizando os métodos de síntese hidrotérmica, crescimento secundário: dip-coating e transporte em fase vapor, para serem avaliadas no processo de separação emulsão óleo/água. Dentro deste contexto foram avaliados alguns parâmetros, destacando-se, a influência do tempo de cristalização na síntese da zeólita mordenita, a influência do precursor (sulfato de alumínio e gibsita) na síntese da membrana zeolítica, influência dos métodos de síntese das membranas zeolíticas e os testes de permeação de água e o processo de separação emulsão óleo/água. A síntese da zeólita mordenita foi realizada utilizando o método hidrotérmico a 170°C, com tempos de cristalização de 24, 36, 48, 72, 96 e 120 horas, a fim de avaliar a cristalinidade da zeólita, e selecionar o melhor tempo para a síntese das membranas zeolíticas. Os suportes cerâmicos α-alumina foram preparados a partir da decomposição dos precursores sulfato de alumínio a 1000°C e gibsita a 1200ºC por 2 horas, e conformados, compactados e sinterizados a 1300ºC por 2h, e então submetidos às técnicas de caracterização: Difratometria de raios X (DRX), Adsorção Física de Nitrogênio, Microscopia Eletrônica de Varredura (MEV), Espectroscopia de Fluorescência de raios X por Energia Dispersiva (FRX-ED) e Termogravimétrica/Térmica Diferencial (TG/DTA). As membranas zeolíticas foram sintetizadas pelos métodos de síntese hidrotérmica, crescimento secundário: dip-coating e transporte em fase vapor a 170°C por 72h e caracterizadas por DRX e MEV. Os suportes cerâmicos e as membranas zeolíticas foram avaliadas em testes de permeação de água e no sistema de separação emulsão óleo/água de um efluente sintético, utilizando um processo de separação por membrana (PSM). Os ensaios foram realizados nas condições de concentração inicial da emulsão 100 mg.L-1, temperatura de 25 °C e pressão de 2,5 bar, permitindo avaliar a permeabilidade e a seletividade a partir da variação da concentração do permeado em (mg.L-1) e da percentagem de rejeição ao óleo (%R). A partir dos resultados obtidos para a síntese dos materiais, pode-se observar a efetiva formação da zeólita mordenita em fase pura e cristalina. Os precursores foram decompostos de maneira satisfatória obtendo a fase α-alumina. A manutenção da fase α-alumina pós-produção dos suportes cerâmicos foi confirmada após caracterização. De acordo com os resultados exibidos pelas análises de DRX e MEV as membranas zeolíticas MZMOR/α-alumina apresentaram uma distribuição homogênea e uniforme dos cristais zeolíticos correspondentes à fase mordenita, sem a presença de impurezas, livres de defeitos e sem fissuras, confirmando a formação da estrutura da membrana zeolítica pelos três métodos de síntese, utilizados neste trabalho. A zeólita mordenita se mostrou excelente em relação à adesão e formação da camada zeolítica sobre o suporte cerâmico α-alumina. A partir da avaliação da permeabilidade e seletividade nos testes de separação da emulsão óleo/água, pode-se concluir que a inserção da zeólita mordenita aos suportes cerâmicos melhorou o processo de separação da emulsão óleo/água. Em termos de eficiência no processo de separação, considera-se que a membrana zeolítica MZMOR/α – Al2O3 (SHGB) foi a que apresentou melhor relação entre fluxo e capacidade seletiva, mostrando a eficácia da utilização das membranas zeolíticas. Todas as membranas zeolíticas sintetizadas e avaliadas mostraram-se promissoras. / The objective of the present work is to synthesize zeolite membranes (Mordenite/α-alumina) using hydrothermal synthesis, secondary growth: dip-coating and vapor-phase transport, to be evaluated in the oil/water emulsion separation process. The influence of the crystallization time on the synthesis of the mordenite zeolite, the influence of the precursor (aluminum sulphate and gibsite) on the synthesis of the zeolite membrane, influence of the synthesis methods of the zeolite membranes and the water permeation tests and the oil/water emulsion separation process. The synthesis of the mordenite zeolite was performed using the hydrothermal method at 170°C, with crystallization times of 24, 36, 48, 72, 96 and 120 hours, in order to evaluate the crystallinity of the zeolite, and to select the best time for the synthesis of zeolite membranes. The α-alumina ceramic supports were prepared from the decomposition of the aluminum sulfate precursors at 1000°C and gibsite at 1200°C for 2 hours, and conformed, compacted and sintered at 1300°C for 2h, and then submitted to the characterization techniques: (XRD), Nitrogen Physical Adsorption, Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (FRX-ED) and Thermogravimetric/Differential Thermal (TG/DTA). The zeolite membranes were synthesized by hydrothermal synthesis, secondary growth: dip-coating and vapor-phase transport at 170°C for 72 hours and characterized by XRD and SEM. Ceramic supports and zeolite membranes were evaluated in water permeation tests and in the oil/water emulsion separation system of a synthetic effluent using a membrane separation process. The tests were carried out under the conditions of initial concentration of the emulsion 100 mg.L-1, temperature of 25°C and pressure of 2,5 bar, allowing to evaluate the permeability and the selectivity from the variation of the permeate concentration in (mg. L-1) and the percentage of oil rejection (% R). From the results obtained for the synthesis of the materials, it is possible to observe the effective formation of zeolite mordenite in pure and crystalline phase. The precursors were satisfactorily decomposed to give the α-alumina phase. The maintenance of the post-production α-alumina phase of the ceramic supports was confirmed after characterization. The MZMOR/α-alumina zeolite membranes presented a homogeneous and uniform distribution of the zeolite crystals corresponding to the mordenite phase, without the presence of impurities, free of defects and without cracks, confirming the formation of the structure of the zeolite membrane by the three methods of synthesis, used in this work. The mordenite zeolite showed excellent adhesion and formation of the zeolitic layer on the ceramic support α-alumina. From the evaluation of the permeability and selectivity in the oil/water emulsion separation tests, it can be concluded that the insertion of the mordenite zeolite to the ceramic supports improved the separation process of the oil/water emulsion. In terms of efficiency in the separation process, the zeolite membrane MZMOR/α-Al2O3(SHGB) was considered to have the best relationship between flow and selectivity, showing the efficacy of zeolite membranes. All zeolite membranes synthesized and evaluated were promising.
3

Vapour Phase Transport Growth of One-Dimensional Zno Nanostructures and their Applications

Sugavaneshwar, R P January 2013 (has links) (PDF)
One-dimensional (1D) nanostructures have gained tremendous attention over the last decade due to their wide range of potential applications. Particularly, ZnO 1D nanostructures have been investigated with great interest due to their versatility in synthesis with potential applications in electronics, optics, optoelectronics, sensors, photocatalysts and nanogenerators. The thesis deals with the challenges and the answer to grow ZnO 1D nanostructure by vapor phase transport (VPT) continuously without any length limitation. The conventional VPT technique has been modified for the non-catalytic growth of ultralong ZnO 1D nanostructures and branched structures in large area with controllable aspect ratio. It has been shown that the aspect ratio can be controlled both by thermodynamically (temperature) and kinetically (vapour flux). The thesis also deals with the fabrication of carbon nanotube (CNT) -ZnO based multifunctional devices and the field emission performance of ZnO nanowires by employing various strategies. The entire thesis has been organised as follows: Chapter 1 deals with Introduction. In this chapter, importance of ultralong nanowires and significance of ultralong ZnO nanowires has been discussed. Various efforts to grow ultralong ZnO nanowire with their advantages and disadvantages have been summarised. Lastly the significance of forming ZnO nanowires based nano hybrid structures and importance of doping in ZnO nanowires and has also been discussed. Chapter 2 deals with experimental procedure and characterization. In this chapter, a single step VPT method for the growth of ultralong ZnO nanowires that incorporates local oxidation barrier for the source has been described. The synthesized nanowires were characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman & photoluminescence. Chapter 3 deals with growth of ZnO nanowires, controlling the aspect ratio of ZnO nanowires, and role of other experimental aspects. In this chapter, a way to grow nanowires continuously without any apparent length limitation, a way to control the diameter of the nanowires kinetically without catalyst particle or seed layer and obtaining smaller diameter of the nanowires by non-catalytic growth as compared to that set by the thermodynamic limit has been discussed. Furthermore, the significance and importance of local oxidation barrier on source for protecting them from degradation, ensuring the continuous supply of vapour and enabling the thermodynamically and kinetically controlled growth of nanowires has been discussed. Lastly, the scheme for large area deposition and a method to use same source material for several depositions has been presented. Chapter 4 deals with multifunctional device based on CNT -ZnO Nanowire Hybrid Architectures same device can be used as a rectifier, a transistor and a photodetector. In this chapter, the fabrication of CNT arrays-ZnO nanowires based hybrid architectures that exhibit excellent high current Schottky like behavior with p-type conductivity of ZnO has been discussed. CNT-ZnO hybrid structures that can be used as high current p-type field effect transistors (FETs) and deliver currents of the order of milliamperes has been presented. Furthermore, the p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been discussed. Lastly, the use of hybrid structures as ultraviolet detectors where the current on-off ratio and the response time can be controlled by the gate voltage has been presented and also an explanation for photoresponse behaviour has been provided. Chapter 5 deals with the substrate-assisted doping of ZnO nanowires grown by this technique. In this chapter, the non-catalytic growth of ZnO nanowires on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG) with controlled aspect ratio has been presented. The elemental mapping to confirm the presence and distribution of carbon and sodium in ZnO nanowires and the transport studies on both carbon and sodium doped ZnO has also been presented. Furthermore the stability of carbon doped ZnO has also been presented. Lastly, the advantage of growing ZnO nanowires on MWCNTs and overall advantage associated with this technique has been discussed. Chapter 6 deals with formation of ZnO nanowire branched structures. In this chapter, a possibility to grow ZnO nanowires on already grown ZnO nanowires has been demonstrated. The formation of branched structure during multiple growth of ZnO nanowire on ZnO nanowire has been presented and evolution of aspect ratio in these branched structures has been discussed. Furthermore, the advantage of using ZnO branched structures and also the ZnO nanoneedles on MWCNT mat for field emission has been presented. Chapter 7 summarizes all the findings of the thesis.

Page generated in 0.046 seconds