• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 15
  • 15
  • 9
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

LESSONS LEARNED AT WEST COVINA, CALIFORNIA: A CASE STUDY ON BRINGING SCIENCE AND PLANNING TOGETHER TO PROTECT HUMAN HEALTH, SAFETY, AND WELFARE FROM VAPOR INTRUSION

HOELZEL, NATHANAEL ZANE 01 July 2004 (has links)
No description available.
12

INVESTIGATION OF ATMOSPHERIC EFFECTS ON VAPOR INTRUSION PROCESSES USING MODELLING APPROACHES

Shirazi, Elham 01 January 2019 (has links)
Most people in the United States (US) spend considerable amount of time indoors—about 90% of their time as compared to outdoors, which makes the US population vulnerable to adverse health effects of indoor air contaminants. Volatile organic compound (VOC) concentrations are well-known to be higher in indoor air than outdoor air. One source of VOC concentrations in indoor air that has gained considerable attention in public health and environmental regulatory communities is vapor intrusion. Vapor intrusion is the process by which subsurface vapors enter indoor spaces from contaminated soil and groundwater. It has been documented to cause indoor air contamination within hundreds of thousands of communities across the US. Vapor intrusion is well-known to be difficult to characterize because indoor air concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. Unexplained variations in field data have not been systematically investigated using theoretical fate and transport processes. This study incorporates the use of numerical models to better understand processes that influence spatial and temporal variability in field data. The overall research hypothesis is that variability in indoor air VOC concentrations can be (partially) explained by variations in building air exchange rate (AER) and pressure differentials between indoor spaces and outdoor spaces. Neither AER nor pressure differentials are currently calculated by existing vapor intrusion numerical models. To date, most vapor intrusion models have focused on subsurface fate and transport processes; however, there is a need to understand the role of aboveground processes in the context of vapor intrusion exposure risks, which are commonly measured as indoor air VOC concentrations. Recent field studies identify these parameters as potentially important and their important role within the broader field of indoor air quality sciences has been well-documented, but more research is needed to investigate these parameters within the specific context of vapor intrusion. To test the overall hypothesis, the dissertation research developed a new vapor intrusion modeling technique that combines subsurface fate and transport modeling with building science approaches for modeling driving forces, such as wind and stack effects. The modeling results are compared with field data measurements from actual vapor intrusion sites and confirms that the research is relevant to not only academic researchers, but also policy decision makers.
13

PREFERENTIAL PATHWAYS FOR VAPOR INTRUSION: SITE SCREENING AND FIELD SAMPLING OF SEWERS TO ASSESS INHALATION EXPOSURE RISKS

Willett, Evan James 01 January 2018 (has links)
Hazardous waste sites and aging wastewater infrastructure are common in the United States. There are hundreds of thousands of contaminated sites and more than a million miles of sewer pipes. Populations living close to hazardous waste sites often suffer from increased risk of adverse health effects due to exposure to contaminated environmental media. Vapor intrusion is one process by which nearby populations can be exposed to volatile organic compounds (VOCs). Aging wastewater infrastructure is important for vapor intrusion site assessments because sewer pipes can serve as preferential vapor transport pathways. Near contaminated sites, pipe deterioration allows migration of contaminants into sewers and potential accumulation of chemical vapors in sewer gas and nearby buildings. The objectives of this study are to develop a screening-level method to identify contaminated sites where additional evaluation of vapor intrusion is necessary, and then conduct field sampling at these sites to investigate sewers as potential vapor intrusion pathways. Sampling was conducted at four study sites, which consist of former and current dry cleaning facilities located in Lexington, Kentucky. The results of this study demonstrate that preferential vapor intrusion pathways such as sewers can facilitate the spread of vapor intrusion exposure risks beyond source areas of contamination.
14

Evaluation of Impacts Resulting from Home Heating Oil Tank Discharges

Weiner, Ellen Rebecca 25 July 2018 (has links)
Diesel #2 is used to heat nearly 400,000 dwellings in Virginia. Home heating oil released from leaking underground tanks located adjacent to homes and residing in unsaturated soil adjacent to houses poses a potentially serious health risk. Specifically, the migration of hazardous vapors into buildings, known as vapor intrusion, can negatively impact indoor air quality in homes and public buildings (USEPA 2015). In this look-back study, we assessed the potential for petroleum vapor intrusion by sampling soil vapor at 25 previously remediated spill sites. Residual contaminants, in particular total petroleum hydrocarbons (TPH) and naphthalene, were detected in approximately 1/3 of the samples. Concentration levels were correlated to site variables (building type, remediation time, physiographic region) including previous abatement measures. Spill category as assigned by the remediation contractor was investigated in conjunction with these three site variables. Remediation time was the most promising predictive site variable, with visible trends downward in DEQ Category 2 sites with increased remediation time. Higher contaminant concentrations were found near basement-style dwellings, which we hypothesize is due to the wall of the basement blocking horizontal migration of contaminants and the flow of oxygen to the release source zone. We found that many sites exceeded the sub-slab risk target threshold in naphthalene concentration, which has negative implications on previous abatement strategy efficacy. / Master of Science
15

INVESTIGATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED AT VAPOR INTRUSION SITES

Roghani, Mohammadyousef 01 January 2018 (has links)
This dissertation investigates unexplained vapor intrusion field data sets that have been observed at hazardous waste sites, including: 1) non-linear soil gas concentration trends between the VOC source (i.e. contaminated groundwater plume) and the ground surface; and, 2) alternative pathways that serve as entry points for vapors to infiltrate into buildings and serve to increase VOC exposure risks as compared to the classic vapor intrusion model, which primarily considered foundation cracks as the route for vapor entry. The overall hypothesis of this research is that theoretical knowledge of fate and transport processes can be systematically applied to vapor intrusion field data using a multiple lines of evidence approach to improve the science-based understanding of how and when vapor intrusion exposure risks will pose increased exposure risk; and, ultimately this knowledge can be used to develop policies that reduce exposure risks. The first objective of this research involved numerical modeling, field sampling and laboratory tests to investigate which factors influence soil gas transport within the subsurface. Combining results of all of these studies provide improved understanding of which factors influence VOC fate and transport within the subsurface. Importantly, the results demonstrate a non-linear trend between the VOC source concentration in the subsurface and the ground surface concentration at the study site, which disagrees with many vapor intrusion conceptual models. Ultimately, the source concentration may not be a good predictor of shallow soil gas concentrations. Laboratory tests described the effect of soil characteristics such as the soil water content on VOC vapor diffusion. The numerical model was able to explain specific conditions that could not be described by the field and laboratory data alone. A paper was published that summarizes the major outcomes from this objective (Pennell et al, 2016). The second objective of this research investigated preferential pathways for VOC vapor migration into buildings. Sewer systems can act as important pathways for vapor intrusion. The research objective is to evaluate conditions that increase the potential for inhalation exposure risks via vapor intrusion thorough sewer systems into indoor spaces. A field study was conducted in California over a 4-year period to investigate the spatial and temporal variability of alternative pathways (e.g. aging infrastructure piping systems) within the context of vapor intrusion exposure risks. A paper was published that summarizes the major outcomes from the field study (Roghani et al. 2018). The final research objective involved the development of a numerical model to describe VOC fate and transport within a sewer system. The numerical model predicts VOC mass transport. The model results were compared to the field data and provides insight about the role preferential pathways play in increasing VOC exposure risks.

Page generated in 0.1431 seconds