Spelling suggestions: "subject:"ariable diffusion coefficients"" "subject:"ariable diffusion eoefficients""
1 |
Stochastic SEIR(S) Model with Nonrandom Total PopulationChandrasena, Shanika Dilani 01 August 2024 (has links) (PDF)
In this study we are interested on the following 4-dimensional system of stochastic differential equations.dS=(-βSI+μ(K-S)+αI+ζR)dt-σ_1 SIF_1 (S,E,I,R)dW_1+σ_4 RF_4 (S,E,I,R)dW_4 dE=(βSI-(μ+η)E)dt+σ_1 SIF_1 (S,E,I,R)dW_1-σ_2 EF_2 (S,E,I,R)dW_2 dI=(ηE-(α+γ+μ)I)dt+σ_2 EF_2 (S,E,I,R)dW_2-σ_3 IF_3 (S,E,I,R)dW_3 dR=(γI-(μ+ζ)R)dt+σ_3 IF_3 (S,E,I,R)dW_3-σ_4 RF_4 (S,E,I,R)dW_4 with variance parameters σ_i≥0 and constants α,β,η,γ,μ ζ≥0. This system may be used to model the dynamics of susceptible, exposed, infected and recovering individuals subject to a present virus with state-dependent random transitions. Our main goal is to prove the existence of a bounded, unique, strong (pathwise), global solution to this system, and to discuss asymptotic stochastic and moment stability of the two equilibrium points, namely the disease free and the endemic equilibria. In this model, as suggested by our advisor, diffusion coefficients can be any local Lipschitz continuous functions on bounded domain D={(S,E,I,R)∈R_+^4:00 of maximum carrying capacity and W_i are independent and identical Wiener processes defined on a complete probability space (Ω,F,{F_t }_(t≥0),P). At the end we carry out some simulations to illustrate our results.
|
2 |
Stochastic SEIR(S) Model with Random Total PopulationChandrasena, Taniya Dilini 01 August 2024 (has links) (PDF)
The stochastic SEIR(S) model with random total population is given by the system of stochastic differential equations:dS=(-βSI+μ(K-S)+αI+ζR)dt-σ_1 SIF_1 (S,E,I,R)dW_1+σ_4 RF_4 (S,E,I,R)dW_4+σ_5 S(K-N)dW_5\\ dE=(βSI-(μ+η)E)dt+σ_1 SIF_1 (S,E,I,R)dW_1-σ_2 EF_2 (S,E,I,R)dW_2+σ_5 E(K-N)dW_5 \\ dI=(ηE-(α+γ+μ)I)dt+σ_2 EF_2 (S,E,I,R)dW_2-σ_3 IF_3 (S,E,I,R)dW_3+σ_5 I(K-N)dW_5 \\ dR=(γI-(μ+ζ)R)dt+σ_3 IF_3 (S,E,I,R)dW_3-σ_4 RF_4 (S,E,I,R)dW_4+σ_5 R(K-N)dW_5, where σ_i>0 and constants α, β, η, γ, ζ, μ≥0. K represents the maximum carrying capacity for the total population and W_k=(W_k (t))_(t≥0) are independent, standard Wiener processes on a complete probability space (Ω,F,(F_t )_(t≥0),P). The SDE for the total population N=S+E+I+R has the form dN(t)=μ(K-N)dt+σ_5 N(K-N)dW_5 on D_0=(0,K). The goal of our study is to prove the existence of unique, Markovian, continuous time solutions on the 4D prism D={(S,E,I,R)∈R_+^4:0≤S, E,I,R≤K, S+E+I+R≤K}. Then using the method of Lyapunov functions we prove the asymptotic stochastic and moment stability of disease-free and endemic equilibria. Finally, we use numerical simulations to illustrate our results.
|
Page generated in 0.1028 seconds