• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Affine Arithmetic Based Methods for Power Systems Analysis Considering Intermittent Sources of Power

Munoz Guerrero, Juan Carlos January 2013 (has links)
Intermittent power sources such as wind and solar are increasingly penetrating electrical grids, mainly motivated by global warming concerns and government policies. These intermittent and non-dispatchable sources of power affect the operation and control of the power system because of the uncertainties associated with their output power. Depending on the penetration level of intermittent sources of power, the electric grid may experience considerable changes in power flows and synchronizing torques associated with system stability, because of the variability of the power injections, among several other factors. Thus, adequate and efficient techniques are required to properly analyze the system stability under such uncertainties. A variety of methods are available in the literature to perform power flow, transient, and voltage stability analyses considering uncertainties associated with electrical parameters. Some of these methods are computationally inefficient and require assumptions regarding the probability density functions (pdfs) of the uncertain variables that may be unrealistic in some cases. Thus, this thesis proposes computationally efficient Affine Arithmetic (AA)-based approaches for voltage and transient stability assessment of power systems, considering uncertainties associated with power injections due to intermittent sources of power. In the proposed AA-based methods, the estimation of the output power of the intermittent sources and their associated uncertainty are modeled as intervals, without any need for assumptions regarding pdfs. This is a more desirable characteristic when dealing with intermittent sources of power, since the pdfs of the output power depends on the planning horizon and prediction method, among several other factors. The proposed AA-based approaches take into account the correlations among variables, thus avoiding error explosions attributed to other self-validated techniques such as Interval Arithmetic (IA).
2

Frequency control adequacy for increasing levels of variable generation

Chavez Orostica, Hector Patricio 07 November 2013 (has links)
The integration of signi cant levels of variable generation into the electricity grid has increased the complexity of power system operations. The strong unpredictability of variable generation poses an important operating complexity and demands an adequate dimensioning and deployment of system reserves. This work establishes su cient conditions for the dimensioning and deployment of adequate reserves. These conditions involve the determi- nation of reserve requirements and the design of a frequency control system consistent with such requirements. The analysis is divided into the adequacy of primary and secondary reserves, and simulations of ERCOT validated by empirical data are considered. Adequacy criteria from current practices are used to evaluate the performance of the formulation. / text
3

The potential benefits of combined heat and power based district energy grids

Duquette, Jean 28 February 2017 (has links)
In this dissertation, an assessment is conducted of the potential benefits of combined heat and power (CHP) based district energy (DE) grids in energy systems of different scale having significant fossil fuel fired electrical generation capacity. Three studies are included in the research. In the first study, the potential benefits of expanding CHP-based DE grids in a large scale energy system are investigated. The impacts of expanding wind power systems are also investigated and a comparison between these technologies is made with respect to fossil fuel utilization and CO2 emissions. A model is constructed and five scenarios are evaluated with the EnergyPLAN software taking the province of Ontario, Canada as the case study. Results show that reductions in fuel utilization and CO2 emissions of up to 8.5% and 32%, respectively, are possible when switching to an energy system comprising widespread CHP-based DE grids. In the second study, a high temporal resolution numerical model (i.e. the SS-VTD model) is developed that is capable of rapidly calculating distribution losses in small scale variable flow DE grids with low error and computational intensity. The SS-VTD model is validated by comparing simulated temperature data with measured temperature data from an existing network. The Saanich DE grid, located near Victoria, Canada, is used as the case study for validation. In the third study, the potential benefits of integrating high penetrations of renewable energy via a power-to-heat plant in a small scale CHP-based DE grid are investigated. The impacts of switching to a CHP-based DE grid equipped with an electric boiler plant versus a conventional wave power system are compared with respect to fossil fuel utilization and CO2 emissions. The SS-VTD model is used to conduct the study. The energy system of the Hot Springs Cove community, located on the west coast of Vancouver Island, Canada is used as the case study in the analysis. Results show that relative to the conventional wave power system, reductions in fuel utilization and CO2 emissions of up to 47% are possible when switching to a CHP-based DE grid. / Graduate

Page generated in 0.1063 seconds