• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jackknife Empirical Likelihood for the Variance in the Linear Regression Model

Lin, Hui-Ling 25 July 2013 (has links)
The variance is the measure of spread from the center. Therefore, how to accurately estimate variance has always been an important topic in recent years. In this paper, we consider a linear regression model which is the most popular model in practice. We use jackknife empirical likelihood method to obtain the interval estimate of variance in the regression model. The proposed jackknife empirical likelihood ratio converges to the standard chi-squared distribution. The simulation study is carried out to compare the jackknife empirical likelihood method and standard method in terms of coverage probability and interval length for the confidence interval of variance from linear regression models. The proposed jackknife empirical likelihood method has better performance. We also illustrate the proposed methods using two real data sets.

Page generated in 0.0539 seconds