Spelling suggestions: "subject:"variational solution"" "subject:"ariational solution""
1 |
Mathematical analysis of equations describing the flow of compressible heat conducting fluids / Mathematical analysis of equations describing the flow of compressible heat conducting fluidsAxmann, Šimon January 2016 (has links)
Title: Mathematical analysis of equations describing the flow of compressible heat conducting fluids Author: Šimon Axmann Department: Mathematical Institute of Charles University Supervisor: doc. Mgr. Milan Pokorný, Ph.D., Mathematical Institute of Charles University Abstract: The present thesis is devoted to the mathematical analysis of equa- tions describing the flow of viscous compressible newtonian fluid in various time regimes. In particular, we present existence results for three problems arising as special cases of a general model derived in the introductory part. The first chap- ter deals with time-periodic solutions to the full Navier-Stokes-Fourier system for heat-conducting fluid. The second chapter contains the proof of existence of steady solutions to a system arising from phase field model for two-phase com- pressible fluid. Finally, in the last section we study steady strong solutions to the Navier-Stokes equations under the additional assumption that the fluid is suffi- ciently dense. For each problem a different concept of the solution is considered, on the other hand in all cases an essential role is played by the crucial quantity effective viscous flux. Keywords: compressible Navier-Stokes system; weak solution; entropy variational solution; large data
|
2 |
Solução variacional para um condensado atrativo e colapsante / A variational solution for the collapsing attractive condensateLôbo, Adriano Malta 29 May 2009 (has links)
Among the wide range of remarkable experimentson dilute Bose-Einstein condensates has been the observed dynamics of attractive condensatesexhibiting collapse and subsequent explosion. For attractive condensates the collapse occurs when the number of atoms N becomes higher than a critical value Nc. After a collapse, the number of atoms N in the condensate is reduced so that for N below Nc A stable configuration is attained. By increasing the number of atoms in the condensate up to the point where N>Nc a further collapse is induced and so on, this process may be repeated and a series of collapses may be observed.In this work we investigate analytically the behavior of the collapsing condensate within the framework of a nonlinear Gross-Pitaevskii equation, suitable to describe the dynamics of the order parameter Ψ(r, t ) of a Bose-Einstein condensatemagnetically trapped in a harmonic three-dimensional potential.Two and three-body inelastic collisions which remove atoms from the condensate are included.By using a variational approach based on d’Alembert ́s principle and suitable for non-conservative systems wefindananalyticalsolutionforacollapsingBose-Einsteincondensate.We demonstrate that a Gaussianansatzcapturesremarkablywellthesequenceofimplosionand explosionobservedinattractivecondensates. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Entre o vasto leque de experiências notáveis em condensados de Bose-Einstein diluídos, foi observada a dinâmica de condensados atrativos exibindo colapso e subseqüente explosão. Para condensados atrativos, o colapso ocorre quando o número de átomos N torna-se maior que um valor crítico Nc'N>Nc. Após um colapso, o número de átomos no condensado é reduzido tal que, para N abaixo de Nc uma configuração estável é atingida. Aumentando o número de átomos no condensado até o ponto onde N>Nc outro colapso é induzido e, assim por diante, esse processo será repetido e uma série de colapsos pode ser observada. Neste trabalho, nós investigamos analiticamente o comportamento do condensado colapsante no âmbito de uma equação de Gross-Pitaevskii não-linear, apropriada para descrever a dinâmica do parâmetro de ordem Ψ(r, t ) de um condensado de Bose-Einstein magneticamente aprisionado em um potencial harmônico tridimensional. Colisões inelásticas de dois e três corpos que removem átomos do condensado são incluídas. Usando uma abordagem variacional baseada no princípio de D’Alembert e apropriada para sistemas não-conservativos nós encontramos uma solução analítica para o condensado de Bose-Einstein colapsante. Nós demonstramos que um ansatz Gaussiano captura notavelmente bem a seqüência de implosões e explosões observada em condensados atrativos.
|
Page generated in 0.1427 seconds