• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Caratheodory-Fejer Interpolation Problems and the Von-Neumann inequality

Gupta, Rajeev January 2015 (has links) (PDF)
The validity of the von-Neumann inequality for commuting $n$ - tuples of $3\times 3$ matrices remains open for $n\geq 3$. We give a partial answer to this question, which is used to obtain a necessary condition for the Carathéodory-Fejérinterpolation problem on the polydisc$\D^n. $ in the special case of $n=2$ (which follows from Ando's theorem as well), this necessary condition is made explicit. We discuss an alternative approach to the Carathéodory-Fejérinterpolation problem, in the special case of $n=2$, adapting a theorem of Korányi and Pukánzsky. As a consequence, a class of polynomials are isolated for which a complete solution to the Carathéodory-Fejér interpolation problem is easily obtained. Many of our results remain valid for any $n\in \mathbb N$, however the computations are somewhat cumbersome. Recall the well known inequality due to Varopoulos, namely, $\lim{n\to \infty}C_2(n)\leq 2 K^\C_G$, where $K^\C_G$ is the complex Grothendieck constant and \[C_2(n)=sup\{\|p(\boldsymbolT)\|:\|p\|_{\D^n,\infty}\leq 1, \|\boldsymbol T\|_{\infty} \leq 1\}.\] Here the supremum is taken over all complex polynomials $p$ in $n$ variables of degree at most $2$ and commuting $n$ - tuples$\boldsymbolT:=(T_1,\ldots,T_n)$ of contractions. We show that \[\lim_{n\to \infty} C_2 (n)\leq \frac{3\sqrt{3}}{4} K^\C_G\] obtaining a slight improvement in the inequality of Varopoulos. We also discuss several finite and infinite dimensional operator space structures on $\ell^1(n) $, $n>1. $

Page generated in 0.0691 seconds