• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 15
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 76
  • 76
  • 23
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FOXO3a in vascular smooth muscle cell apoptosis

Fellows, Adam Lee January 2018 (has links)
FOXO3a is a pro-apoptotic transcription factor which shows increased activation in vascular smooth muscle cells (VSMCs) of advanced atherosclerotic plaques, specifically within the intimal layer. Since VSMC apoptosis plays a crucial role in the pathophysiology of atherosclerosis, we investigated the mechanisms underlying FOXO3a-mediated cell death in this particular cell type. We aimed to characterise a novel VSMC system (FOXO3aA3ERTM) and use these cells to validate MMP-13 and TIMP3 as new FOXO3a target genes. Also, we sought to determine the mechanisms of FOXO3aA3ERTM-mediated VSMC apoptosis, particularly regarding MMP-13 and TIMP3, potential MMP-13 substrates in the extracellular matrix and the precise apoptotic signalling involved. Furthermore, we aimed to investigate whether VSMC-specific activation of FOXO3aA3ERTM in mouse affects vascular remodelling during injury and whether this is reliant on MMP-13. Lastly, we aimed to address if endogenous FOXO3a upregulates MMP-13 in mouse and human VSMCs. Our laboratory has created a transgenic rat VSMC line which stably expresses an inducible FOXO3a mutant allele known as FOXO3aA3ERTM and previous microarray experiments identified matrix metalloproteinase 13 (MMP-13) as a potential novel FOXO3a target gene. Initially, we described several key features of the FOXO3aA3ERTM VSMCs used throughout this thesis, and subsequently demonstrated that MMP-13 is a bona fide target whose expression is rapidly upregulated upon FOXO3a activation, leading to markedly higher levels of protein, cleavage and proteolytic capacity. This induction of MMP-13 was responsible for the vast majority of FOXO3a-mediated apoptosis which was accompanied by prominent degradation of fibronectin, a glycoprotein found in the extracellular matrix. However, we could not identify a terminal apoptotic pathway. FOXO3a also downregulated the endogenous MMP inhibitor TIMP3, the recombinant protein of which reduced both MMP-13 proteolysis and FOXO3a-mediated apoptosis. Activation of FOXO3aA3ERTM in the VSMCs of medium and large arteries in mice resulted in heightened expression of MMP-13 in the vessel wall, which contributed to enhanced neointimal formation during carotid ligation. Finally, endogenous FOXO3a activation leads to increased MMP-13 expression in human VSMCs, but not mouse. Overall, we have shown that FOXO3a promotes VSMC apoptosis through MMP-13 both in vitro and in vivo, a novel pathway that has important implications for the pathogenesis and treatment of vascular disease.
2

Mitochondrial function in atherosclerosis and vascular smooth muscle cells

Reinhold, Johannes January 2019 (has links)
Atherosclerosis is the leading cause of death in the Western world. Although mitochondrial DNA (mtDNA) damage has been implicated in atherosclerosis, it is unclear whether the damage is sufficient to impair mitochondrial respiration, and mitochondrial dysfunction has not been demonstrated. Treatment of vascular smooth muscle cells (VSMCs) with an atherogenic lipid, oxidised low-density lipoprotein (OxLDL), dose dependently decreased basal and maximal respiration and fat-feeding of apolipoprotein E deficient (ApoE-/-) mice reduced mitochondrial DNA copy number relative to nuclear DNA in aortas. Mitochondrial respiration of ApoE-/- mouse aortas, assessed through a 24-well Seahorse extracellular flux analyser, was not affected prior to the development of atherosclerotic plaques. Developed human carotid atherosclerotic plaques were dissected into defined regions including healthy media, shoulder region, fibrous cap and core and their respiration was investigated. The respiratory reserve capacity (RRC) of the shoulder region was similar to the media. However, the cap RRC was significantly reduced compared to healthy media. In contrast, the extracellular acidification rates (ECAR) of the media, shoulder, cap and core regions were similar. In addition, mtDNA copy number was significantly reduced in tissues derived from human plaques compared to healthy arteries and expression of complexes I and II of the electron transfer chain (ETC) were significantly reduced in plaque VSMCs. OxLDL induced mitophagy in human VSMCs and plaque VSMCs demonstrated increased levels of mitophagy without compensatory upregulation of proteins involved in mitochondrial biogenesis. Understanding the role of mitochondrial metabolism and signalling is important for our understanding of disease progression and may lead to future therapeutic targets.
3

INVESTIGATING THE ROLE OF LEPTIN AND GSK-3 IN THE OSTEOGENIC DIFFERENTIATION OF VASCULAR SMOOTH MUSCLE CELLS / MECHANISM(S) OF VASCULAR CALCIFICATION

Zeadin, Melec January 2015 (has links)
Obesity is a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease (CVD), and vascular calcification. Vascular calcification is correlated with advanced CVD and a significant predictor of cardiovascular events. Obese individuals tend to have increased levels of circulating leptin, an adipocytokine that is a significant independent predictor of cardiovascular disease. We have shown that daily intraperitoneal injections of exogenous leptin (125 μg/mouse/d) can promote vascular calcification in an ApoE-/- mouse model of atherosclerosis. This increase in calcification is associated with an increase in the expression of several osteoblast-specific markers and is independent of any affect on atherosclerotic lesion size. Our studies suggest that leptin mediates the osteogenic differentiation of vascular smooth muscle cells (VSMCs) to promote vascular calcification via a pathway involving the inhibition of glycogen synthase kinase (GSK)-3 activity. Other studies have suggested that endoplasmic reticulum (ER) stress-induced GSK-3 activity promotes the development of atherosclerosis. Therefore, we hypothesized that during the progression of vascular disease, GSK-3 functions as a checkpoint for VSMCs at which cells can commit to: i) de-differentiation, thereby contributing to atherosclerosis, or ii) osteogenic differentiation, thereby contributing to vascular calcification. We investigated the effects of modulating GSK-3 activity on the differentiation of VSMCs in vitro. We found that many of the molecular tools that are typically used to modulate ER stress can promote the expression of osteoblast-specific markers and the osteogenic differentiation of MOVAS cells. However, because many of these interventions affect multiple pathways in MOVAS cells, the specific role of the ER stress – GSK-3 pathway is difficult to discern. Future studies are required to determine the effects of direct modulation of GSK-3 on vascular calcification and to delineate the mechanisms/effects of various ER stressors in the osteogenic differentiation of VSMCs. / Thesis / Doctor of Philosophy (Medical Science)
4

The Role of the Sphingosine-1-Phosphate Receptor 1 in Arterial Smooth Muscle Cells in Atherosclerosis Development

Thyagarajan, Narmadaa January 2024 (has links)
Sphingosine-1-phosphate receptor type 1 (S1PR1), one of the five S1PRs that signals in response to bioactive lysosphingolipid S1P, regulates several fundamental processes in distinct cell types and is implicated in atherosclerosis. Using the cre-lox recombination system, previous studies identified that knocking out S1PR1 in myeloid and endothelial cells promotes plaque development in atherogenic mouse models. In the process of generating S1pr1lox/lox; ApoEKO/KO control mice, we unexpectedly noticed that S1pr1lox/lox mutation alone, in the absence of cre recombinase, reduces high-fat (HF) diet-induced atherosclerosis in S1pr1lox/lox; ApoEKO/KO mice compared to S1pr1WT/WT; ApoEKO/KO mice. Although S1pr1lox/lox allele partially suppressed S1pr1 levels in macrophages and vascular smooth muscle cells (VSMC), the presence of this mutation in a non-BM derived cell type was responsible for this reduced atherosclerosis in S1pr1lox/lox; ApoEKO/KO mice. We speculated that it could be VSMCs due to their abundance in the vascular wall and their role in foam cell formation. In this thesis, we directly tested the effects of inactivating S1PR1 in smooth muscle cells (Tagln-creTG; S1pr1lox/lox; ApoEKO/KO mice) on atherosclerosis. Our results demonstrated that deleting S1PR1 in smooth muscle cells drastically reduces atherosclerosis in apoE-deficient mice. The aortic SMCs isolated from these mice also exhibited reduced cell proliferation and lipid droplet formation in response to S1PR1 agonist SEW2871 compared to S1PR1-WT VSMCs. Furthermore, we also tested the effects of directly inhibiting S1PR1 with S1PR1 selective antagonist Ex26 at a dosage of 0.1 mg/kg/hr in S1pr1WT/WT; ApoEKO/KO mice and Tagln-creTG; S1pr1lox/lox; ApoEKO/KO mice. The prolonged exposure to Ex26 substantially reduced atherosclerotic plaque development in apoE KO mice on an HFD compared to DMSO-treated apoE KO mice. However, this protection was completely lost in mice that lack the S1pr1 gene in VSMCs. Overall, our results suggest that knocking out S1PR1 in VSMCs results in atheroprotection that surpasses the effects of inactivating S1PR1 in macrophages and endothelial cells which are known to promote atherosclerosis. / Dissertation / Doctor of Philosophy (PhD)
5

Functions of TRF2: From Telomere Protection to DNA Damage Signaling and Vascular Remodeling

Khan, Sheik Jamaludin 18 June 2008 (has links)
TTAGGG repeat factor 2 (TRF2) is a protein that plays an important role in capping telomere ends from DNA damage responses. Telomere DNA consists of double strand repeats of the TTAGGG sequence ending with a 3'single-stranded overhang of the guanine strand (the G-strand overhang). TRF2 protects telomeres from being recognized as double-stranded breaks. It is thought that this protection is performed through the formation of T-loop structures and recruitment of proteins into a complex called shelterin. The exact mechanism of T-loop formation is unknown. I show with in vitro biochemical studies that TRF2 specifically interacts with telomeric ss/ds DNA junctions and binding is sensitive to the sequence of the G-strand overhang and double-stranded DNA sequence at the junction. Binding assays with TRF2 truncation mutants suggest that TRF2 interacts with both the double-stranded DNA through the C-terminal DNA binding domain and the G-strand overhang through the N-terminus. Mobility shifts and atomic force microscopy with truncation mutants bound to telomeric DNA also show that a previously uncharacterized "linker" region within TRF2 is involved in DNA-specific TRF2 oligomerization. From these observations, I suggest that TRF2 forms protective loops by oligomerizing through both a previously characterized dimerization domain and the linker region. I propose that loop formation involving the telomere ends is accomplished through direct interactions between TRF2 and the G-strand overhang. In addition to DNA protection, a new role has emerged for TRF2 in sensing DNA damage. TRF2 can be phosphorylated within its dimerization domain by ATM and recruited to DNA damage foci in cells. The inhibition of TRF2 function alone has been shown to induce senescence and apoptosis in vascular endothelial cells. Since the common stimuli for a senescence phenotype is activation of a DNA damage response, I studied the relationship between DNA damage and TRF2 phosphorylation. Ex-vivo characterization of DNA damage-induced changes in vascular smooth muscle cells (VSMC) was undertaken. VSMC treated with H202 induced an increase in reactive oxygen species (ROS), and 8-oxo-guanine accumulation resulting in cell cycle arrest, chromatin condensation and a senescent phenotype. Interestingly phosphorylated TRF2 and ATM were also up regulated. Balloon injury was used to test the connection between phosphorylated TRF2 and senescence during vascular remodeling in rat arteries. Vascular remodeling as judged by neointima formation was associated with accumulation of 8-oxo-guanine, DNA damage signaling, including phosphorylated TRF2, an increase in cell cycle inhibitors and senescence. These events were exaggerated in aged animals and are consistent with a role in telomere dysfunction, and age related diseases.
6

Differential expressions of cell cycle regulatory proteins and ERK1/2 characterize the proliferative smooth muscle cell phenotype induced by allylamine

Jones, Sarah Anne Louise 30 September 2004 (has links)
Chronic oxidative injury by allylamine induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p21 and p27, and extracellular regulated kinases (ERK1/2) to mediate the proliferative advantage of oxidatively stressed (i.e. allylamine injured) vSMC. Isolated rat aortic SMC from allylamine treated and control rats were cultured on different extracellular matrix (ECM) proteins. Following mitogen restriction, cultures were stimulated with serum with or without inhibitors of NF-kB or MEK. Western blot analysis was performed to identify protein differences between treatment groups. Basal levels of p21 were 1.6 fold higher in randomly cycling allylamine cells than control counterparts seeded on a plastic substrate, a difference lost when cells were seeded on collagen. p27 levels were comparable in both cell types irrespective of substrate. Basal levels of p21 and p27 were 1.4 fold higher in G0 synchronized allylamine cells compared with G0 synchronized control cells seeded on a plastic substrate. Following cell cycle progression, differences in protein levels were not detected. Treatment with 100 nM pyrollidine dithiocarbamate (PDTC) resulted in significant decreases in p21 and p27 in allylamine cells versus control cells following serum stimulation for 9 hours. This decrease was even greater for p21 in allylamine cells when grown on collagen relative to control cells. Alterations in peak and temporal activation of ERK1/2 were observed in allylamine cells seeded on a plastic substrate as compared to control cells, following serum stimulation. Seeding on collagen decreased the enhanced peak phosphorylation of ERK1/2 and increased the sustained activity in allylamine cells compared with control counterparts. Inhibition of ERK1/2 activity resulted in reduced p21 expression in both cells types, but the response was markedly enhanced in allylamine cells, and preferentially observed on a restrictive collagen substrate. We conclude that induction of proliferative (i.e. atherogenic) phenotypes following repeated cycles of oxidative injury involves ERK1/2 activity and modulation of the cyclin dependent kinase inhibitors, p21 and p27, in a matrix-dependent manner.
7

Dysregulation of nuclear factor kappa B activity and osteopontin expression in oxidant-induced atherogenesis

Williams, Edward Spencer 30 September 2004 (has links)
NF-κB activity is critical in the regulation of atherosclerotic vascular smooth muscle cell (vSMC) phenotypes induced following oxidative injury by allylamine. The present studies were designed to detail dysregulation of NF-κB activity in these altered phenotypes, and to assess the importance of NF-κB in the regulation of osteopontin, a cytokine which modulates atherosclerosis. Increased degradation of IκBα was observed in allylamine-induced atherosclerotic vSMC phenotypes (henceforth referred to as allylamine cells). Enhanced phosphorylation of I-κ-kinases was observed by Western immunoblotting. NF-κB DNA binding activity as assessed by electrophoretic mobility shift assay demonstrated changes in the kinetics and magnitude of induction of binding. Enhancement of NF-κB binding activity was evident in allylamine cells compared to controls when seeded on plastic, fibronectin, and laminin, but not collagen I. Posttranscriptional alterations in Rel protein expression and nuclear localization partly account for changes in NF-κB DNA binding activity. Promoter-specific NF-κB binding profiles suggest altered dimer prevalence as a consequence of the changes in Rel protein expression. The expression of NF-κB regulated genes osteopontin and MMP-2 was enhanced in allylamine-treated aortas, while cyclin D1 and MMP-9 were unchanged. As the importance of osteopontin in atherosclerosis has been described in several models, subsequent studies were designed to assess osteopontin promoter activity. Activity of the osteopontin promoter was significantly reduced in allylamine cells compared to controls as assessed using a luciferase reporter. Deletion analysis suggested the presence of inhibitory cis-acting elements in the regulatory region of the gene. Mutation of these elements, including VDRE, AP-1, NF-κB, and USF1, indicated that NF-κB and USF1 mediate suppression of osteopontin promoter activity in allylamine cells. Decreased serine phosphorylation of immunoprecipitated RelA/p65 was observed in allylamine cells, indicating decreased ability of this protein to transactive gene promoters. NF-κB was found to play a role in suppression of osteopontin promoter activity by collagen I-mediated integrin signaling. These findings suggest that enhancements in NF-κB activity suppress osteopontin promoter activity in oxidant-activated vSMC cultures. Dysregulation of NF-κB activity occurs as a result of altered matrix and intracellular signaling upstream of the nucleus and possibly differential dimer assembly leading to cell-specific profiles of NF-κB-dependent gene regulation.
8

Differential expressions of cell cycle regulatory proteins and ERK1/2 characterize the proliferative smooth muscle cell phenotype induced by allylamine

Jones, Sarah Anne Louise 30 September 2004 (has links)
Chronic oxidative injury by allylamine induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p21 and p27, and extracellular regulated kinases (ERK1/2) to mediate the proliferative advantage of oxidatively stressed (i.e. allylamine injured) vSMC. Isolated rat aortic SMC from allylamine treated and control rats were cultured on different extracellular matrix (ECM) proteins. Following mitogen restriction, cultures were stimulated with serum with or without inhibitors of NF-kB or MEK. Western blot analysis was performed to identify protein differences between treatment groups. Basal levels of p21 were 1.6 fold higher in randomly cycling allylamine cells than control counterparts seeded on a plastic substrate, a difference lost when cells were seeded on collagen. p27 levels were comparable in both cell types irrespective of substrate. Basal levels of p21 and p27 were 1.4 fold higher in G0 synchronized allylamine cells compared with G0 synchronized control cells seeded on a plastic substrate. Following cell cycle progression, differences in protein levels were not detected. Treatment with 100 nM pyrollidine dithiocarbamate (PDTC) resulted in significant decreases in p21 and p27 in allylamine cells versus control cells following serum stimulation for 9 hours. This decrease was even greater for p21 in allylamine cells when grown on collagen relative to control cells. Alterations in peak and temporal activation of ERK1/2 were observed in allylamine cells seeded on a plastic substrate as compared to control cells, following serum stimulation. Seeding on collagen decreased the enhanced peak phosphorylation of ERK1/2 and increased the sustained activity in allylamine cells compared with control counterparts. Inhibition of ERK1/2 activity resulted in reduced p21 expression in both cells types, but the response was markedly enhanced in allylamine cells, and preferentially observed on a restrictive collagen substrate. We conclude that induction of proliferative (i.e. atherogenic) phenotypes following repeated cycles of oxidative injury involves ERK1/2 activity and modulation of the cyclin dependent kinase inhibitors, p21 and p27, in a matrix-dependent manner.
9

Dysregulation of nuclear factor kappa B activity and osteopontin expression in oxidant-induced atherogenesis

Williams, Edward Spencer 30 September 2004 (has links)
NF-κB activity is critical in the regulation of atherosclerotic vascular smooth muscle cell (vSMC) phenotypes induced following oxidative injury by allylamine. The present studies were designed to detail dysregulation of NF-κB activity in these altered phenotypes, and to assess the importance of NF-κB in the regulation of osteopontin, a cytokine which modulates atherosclerosis. Increased degradation of IκBα was observed in allylamine-induced atherosclerotic vSMC phenotypes (henceforth referred to as allylamine cells). Enhanced phosphorylation of I-κ-kinases was observed by Western immunoblotting. NF-κB DNA binding activity as assessed by electrophoretic mobility shift assay demonstrated changes in the kinetics and magnitude of induction of binding. Enhancement of NF-κB binding activity was evident in allylamine cells compared to controls when seeded on plastic, fibronectin, and laminin, but not collagen I. Posttranscriptional alterations in Rel protein expression and nuclear localization partly account for changes in NF-κB DNA binding activity. Promoter-specific NF-κB binding profiles suggest altered dimer prevalence as a consequence of the changes in Rel protein expression. The expression of NF-κB regulated genes osteopontin and MMP-2 was enhanced in allylamine-treated aortas, while cyclin D1 and MMP-9 were unchanged. As the importance of osteopontin in atherosclerosis has been described in several models, subsequent studies were designed to assess osteopontin promoter activity. Activity of the osteopontin promoter was significantly reduced in allylamine cells compared to controls as assessed using a luciferase reporter. Deletion analysis suggested the presence of inhibitory cis-acting elements in the regulatory region of the gene. Mutation of these elements, including VDRE, AP-1, NF-κB, and USF1, indicated that NF-κB and USF1 mediate suppression of osteopontin promoter activity in allylamine cells. Decreased serine phosphorylation of immunoprecipitated RelA/p65 was observed in allylamine cells, indicating decreased ability of this protein to transactive gene promoters. NF-κB was found to play a role in suppression of osteopontin promoter activity by collagen I-mediated integrin signaling. These findings suggest that enhancements in NF-κB activity suppress osteopontin promoter activity in oxidant-activated vSMC cultures. Dysregulation of NF-κB activity occurs as a result of altered matrix and intracellular signaling upstream of the nucleus and possibly differential dimer assembly leading to cell-specific profiles of NF-κB-dependent gene regulation.
10

CD40-Mediated Activation of Vascular Smooth Muscle Cell Chemokine Production Through a Src-Initiated, MAKP-Dependent Pathway

Mukundan, Lata, Milhorn, Denise M., Matta, Bharati, Suttles, Jill 01 January 2004 (has links)
The interaction between CD40 ligand (CD154) expressed on activated T cells and its receptor, CD40, has been shown to play a role in the onset and maintenance of autoimmune inflammation. Recent studies suggest that CD154+T cells also contribute to the regulation of atherogenesis due to their capacity to activate CD40+cells of the vasculature, including vascular smooth muscle cells (VSMC). The present study evaluated the signalling events initiated through CD40 ligation which culminate in VSMC chemokine production. CD40 ligation resulted in the phosphorylation/activation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, but not c-jun N-terminal kinase. Inhibition of both ERK1/2 and p38 activity abrogated CD40 stimulation of IL-8 and MCP-1 production. CD40-mediated induction of chemokines also showed dependence on the Src family kinase activity. The Src kinase inhibitor, PP2, was found to inhibit CD40-induced phosphorylation of ERK1/2 as well as activation of IκB kinase. An evaluation of Src kinases that may be important in CD40 signalling identified Lyn as a potential candidate. These data indicate that CD40 signalling in VSMC activates a Src family kinase-initiated pathway that results in the induction of MAPK activities required for successful induction of chemokine synthesis.

Page generated in 0.0759 seconds