• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms regulating platelet-derived growth factor-D transcription in vascular smooth muscle cells

Liu, Yanxia, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Platelet-derived growth factor D-chain (PDGF-D) is the newest member of the PDGF family of mitogens and chemo-attractants; it is expressed in a wide variety of cell types, including vascular smooth muscle cells (SMCs). The molecular mechanisms regulating PDGF-D transcription are unknown. Here I investigated the effects of angiotensin II (ATIl) and IL-1 beta on the transcription of PDGF-D and changes in vascular SMCs phenotype. Primer extension analysis mapped a single transcriptional start site to the ccAG CGC motif of PDGF-D promoter. Several potential transcription factor binding sites such as SpI, Ets-1, NF-??B, IRF-1, p53, Smad4 and AP1 were located in the proximal 1168bp of the PDGF-D promoter. ATII-inducible Ets-1 and PDGF-D gene expression is mediated via H202. IL-I beta supresses PDGF-D promoter activity, mRNA and protein expression in SMCs through NF-??B p65, IRF-1 and HDAC1, which form complex in the PDGF-D promoter. This study provides the first direct link between NF-KB and the PDGF-D promoter, IRF-1 with any member of the PDGF family and a new example of HDAC mediated inhibition of gene expression. In summary, this study investigates for the first time the mechanisms mediating the transcriptional regulation of PDGF-D in vascular SMCs. This provides valuable insights into the molecular control of vascular phenotype, and opens up potential opportunities for therapeutic intervention.

Page generated in 0.0657 seconds