• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active oxygen involvement in developmental processes in Populus : with emphasis on HipI-superoxide dismutase /

Srivastava, Vaibhav, January 2009 (has links) (PDF)
Diss. (sammanfattning) Umeå : Sveriges lantbruksuniversitet, 2009. / Härtill 4 uppsatser.
2

Molecular factors involved in the formation of secondary vascular tissues and lignification in higher plants : studies of CuZn-SOD and members of MYB and zinc-finger transcription factor families /

Karlsson, Marlene, January 2003 (has links) (PDF)
Diss. (sammanfattning). Umeå : Sveriges lantbruksuniv., 2003. / Härtill 4 uppsatser.
3

Developmental biology of wood formation : finding regulatory factors through functional genomics /

Schrader, Jarmo, January 2003 (has links) (PDF)
Diss. (sammanfattning). Umeå : Sveriges lantbruksuniv., 2003. / Härtill 5 uppsatser.
4

The role of the BLADE-ON-PETIOLE genes in the regulation of plant growth and development /

Holmlund, Mattias. January 2008 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2008. / Härtill 4 uppsatser.
5

UNRAVELING THE MOLECULAR FUNCTIONS OF PLANT VASCULAR TISSUES IN RESPONSE TO LOW-PHOSPHATE GROWTH CONDITIONS

Jing Huang (8721963) 09 December 2022 (has links)
<p> </p> <p>Phosphorus (P) is an essential macronutrient for plant growth and development. P deficiency is becoming one of the most limiting factors for crop productivity. It has been discovered that vascular tissue-mediated systemic signaling plays important roles in plant responses to P deficient growth conditions. In order to understand vascular tissue-specific molecular alterations in response to P deficiency, I used <em>Plantago major </em>as a model species to study the transcriptomic alterations in vascular tissues because it is fast and easy to dissect pure vascular tissues from this plant. I identified 237 differentially expressed genes involved in various roles to P deficiency, such as “phosphate metabolism and remobilization”, “sucrose metabolism, loading and synthesis” and “plant hormone metabolism and signal transduction”. In addition, translating ribosome affinity purification (TRAP) was used to identify 547 differentially expressed genes from the Arabidopsis vascular tissues. <em>AtERF</em>, one of the downregulated genes, was chosen for further functional characterization. My results demonstrated that <em>AtERF </em>is specifically expressed in vascular tissues and it encodes a transcription factor. Over-expression of <em>AtERF </em>led to a purple vein phenotype, decreased growth of shoots and roots, and reduced Pi concentrations in shoots and roots. The <em>erf </em>mutant plants displayed larger shoots and roots, and increased Pi concentration in shoots and roots. Molecular analysis in the over-expression and mutant plants showed that genes related to hormone metabolisms and root architecture establishment might be the major players enabling plants to cope with low P. The discoveries from this study may be used to implement strategies for the production of crops with increased P uptake efficiency. </p>
6

Caractérisation d'un nouveau membre du complexe d'élongation des acides gras chez Arabidopsis thaliana : intéractions métaboliques et régulation développementale / Very long chain fatty acid elongation complex in Arabidopsis thaliana : metabolic interaction and developmental regulation

Morineau, Céline 16 December 2014 (has links)
Les acides gras à très longues chaine (VLCFA) sont essentiels dans le développement, particulièrement dans les mécanismes de trafic vésiculaires, de différenciation et division cellulaire. Cependant, le rôle de ces VLCFA dans ces différents processus chez les plantes n’est pas encore bien compris. Afin d’identifier de nouveaux acteurs associés à la biosynthèse ou la fonction des VLCFA, un crible suppresseur multicopies a été réalisé dans un mutant d’élongation des VLCFA de levure. La perte de l’activité déshydratase PHS1 chez la levure et de PASTICCINO2 chez les plantes perturbe la croissance et induit des défauts de cytokinèse. La PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) historiquement caractérisée comme une déshydratase inactive est capable de restaurer les défauts de croissance et d’élongation de phs1 mais non de pas2. PTPLA interagit avec plusieurs membres du complexe élongase dans le RE et son absence conduit à l’accumulation 3-hydroxyacyl-CoA, signature des déshydratases impliquées dans l’élongation des acides gras. Cependant, la perte de PTPLA conduit à une augmentation des VLCFA, probablement dépendante de PAS2 montrant que PTPLA serait un répresseur potentiel de l’élongation. Les deux déshydratases ont des profils d’expression divergents dans la racine. PAS2 est majoritairement exprimé dans l’endoderme tandis que PTPLA s’exprime uniquement dans les tissus vasculaires et le péricycle. La comparaison de l’expression ectopique de PAS2 et PTPLA dans leur tissus respectif confirme l’existence de deux complexe élongase indépendant associé à PAS2 ou PTPLA et interagissant de manière non cellule autonome. Les cytokinines pourraient constituer le signal entre les deux complexes élongase du fait que la biosynthèse de ces hormones est réprimée par les VLCFA. Les VLCFA répriment ainsi l'expression d'IPT3 dans les racines comme observées pour la partie apicale. Les cytokinines semblent aussi réguler la teneur en VLCFA dans la racine suggérant la présence de boucles de rétrocontrôles entre ces hormones et les VLCFA / Very long chain fatty acids (VLCFA) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFA in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFA, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFA elongation but not the plant pas2 defects. PTPLA interacted with elongase members in the ER and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function led to increased VLCFA levels, effect that was dependent of the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted in the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes comprising PAS2 or PTPLA that were functionally interacting in a non-cell autonomous manner. A putative regulating signal could involve cytokinins that were described to be regulated by VLCFA. VLCFA were indeed found to repress IPT3 expression in roots like in leaves. Cytokinins were also found to regulate VLCFA levels suggesting the existence of regulatory feedback loops between cytokinins and VLCFA

Page generated in 0.0394 seconds