Spelling suggestions: "subject:"detector retrieval"" "subject:"detector etrieval""
1 |
Coherent Doppler Lidar for Boundary Layer Studies and Wind EnergyJanuary 2013 (has links)
abstract: This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013
|
2 |
An Improved Hurrican Wind Vector Retrieval Algorithm Using Sea Winds ScatterometerLaupattarakasem, Peth 01 January 2009 (has links)
Over the last three decades, microwave remote sensing has played a significant role in ocean surface wind measurement, and several scatterometer missions have flown in space since early 1990's. Although they have been extremely successful for measuring ocean surface winds with high accuracy for the vast majority of marine weather conditions, unfortunately, the conventional scatterometer cannot measure extreme winds condition such as hurricane. The SeaWinds scatterometer, onboard the QuikSCAT satellite is NASA's only operating scatterometer at present. Like its predecessors, it measures global ocean vector winds; however, for a number of reasons, the quality of the measurements in hurricanes are significantly degraded. The most pressing issues are associated with the presence of precipitation and Ku-band saturation effects, especially in extreme wind speed regime such as tropical cyclones (hurricanes and typhoons). Under this dissertation, an improved hurricane ocean vector wind retrieval approach, named as Q-Winds, was developed using existing SeaWinds scatterometer data. This unique data processing algorithm uses combined SeaWinds active and passive measurements to extend the use of SeaWinds for tropical cyclones up to approximately 50 m/s (Hurricane Category-3). Results show that Q-Winds wind speeds are consistently superior to the standard SeaWinds Project Level 2B wind speeds for hurricane wind speed measurement, and also Q-Winds provides more reliable rain flagging algorithm for quality assurance purposes. By comparing to H*Wind, Q-Winds achieves ~9% of error, while L2B-12.5km exhibits wind speed saturation at ~30 m/s with error of ~31% for high wind speed ( > 40 m/s).
|
3 |
An Ocean Surface Wind Vector Model Function For A Spaceborne Microwave Radiometer And Its ApplicationSoisuvarn, Seubson 01 January 2006 (has links)
Ocean surface wind vectors over the ocean present vital information for scientists and forecasters in their attempt to understand the Earth's global weather and climate. As the demand for global wind velocity information has increased, the number of satellite missions that carry wind-measuring sensors has also increased; however, there are still not sufficient numbers of instruments in orbit today to fulfill the need for operational meteorological and scientific wind vector data. Over the last three decades operational measurements of global ocean wind speeds have been obtained from passive microwave radiometers. Also, vector ocean surface wind data were primarily obtained from several scatterometry missions that have flown since the early 1990's. However, other than SeaSat-A in 1978, there has not been combined active and passive wind measurements on the same satellite until the launch of the second Advanced Earth Observing Satellite (ADEOS-II) in 2002. This mission has provided a unique data set of coincident measurements between the SeaWinds scatterometer and the Advanced Microwave Scanning Radiometer (AMSR). AMSR observes the vertical and horizontal brightness temperature (TB) at six frequency bands between 6.9 GHz and 89.0 GHz. Although these measurements contain some wind direction information, the overlying atmospheric influence can easily obscure this signal and make wind direction retrieval from passive microwave measurements very difficult. However, at radiometer frequencies between 10 and 37 GHz, a certain linear combination of vertical and horizontal brightness temperatures causes the atmospheric dependence to be nearly cancelled and surface parameters such as wind speed, wind direction and sea surface temperature to dominate the resulting signal. This brightness temperature combination may be expressed as ATBV-TBH, where A is a constant to be determined and the TBV and TBH are the brightness temperatures for the vertical and horizontal polarization respectively. In this dissertation, an empirical relationship between the AMSR's ATBV-TBH and SeaWinds' surface wind vector retrievals was established for three microwave frequencies: 10, 18 and 37 GHz. This newly developed model function for a passive microwave radiometer could provide the basis for wind vector retrievals either separately or in combination with scatterometer measurements.
|
Page generated in 0.0542 seconds