• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and validation of innovative ultrasound flow imaging methods / Développement et validation de nouvelles méthodes d'imagerie du flux par ultrasons

Lenge, Matteo 17 March 2015 (has links)
L'échographie est largement utilisée pour l'imagerie du flux sanguin pour ses nombreux avantages tels que son inocuité, son cout réduit, sa facilité d'utilisation et ses performances. Cette thèse a pour objectif de proposer de nouvelles méthodes ultrasonores d'imagerie du flux sanguin. Après une étude bibliographique, plusieurs approches ont été étudiées en détail jusqu'à leur implémentation sur l'échographe de recherche ULA-OP développé au sein du laboratoire et ont été validées en laboratoire et en clinique. La transmission d'ondes planes a été proposée pour améliorer la technique d'imagerie utilisant les oscillations transverses. Des champs de pression ultrasonores présentant des oscillations transverses sont générés dans de larges régions et exploités pour l'estimation vectorielle du flux sanguin à une haute cadence d'imagerie. Des cartes du flux sanguin sont obtenues grâce à une technique s'appuyant sur la transmission d'ondes planes couplées à un nouvel algorithme d'estimation de la vitesse dans le domaine fréquentiel. Les méthodes vectorielles implémentées en temps réel dans le ULA-OP ont été comparées à la méthode Doppler classique lors d'une étude clinique. Les résultats ont montré le bénéfice des méthodes vectorielles en termes de précision et de répétabilité. La nouvelle méthode proposée a démontré sa grande précision ainsi que son gain en termes de temps de calcul aussi bien en simulations qu'en acquisitions en laboratoire ou lors d'essais in vivo. Une solution logicielle temps réel implémentée sur une carte GPU a été proposée et testée afin de réduire encore le temps de calcul et permettre l'emploi de la méthode en clinique / Ultrasound is widely used for blood flow imaging because of the considerable advantages for the clinician, in terms of performance, costs, portability, and ease of use, and for the patient, in terms of safety and rapid checkup. The undesired limitations of conventional methods (1-D estimations and low frame-rate) are widely overtaken by new vector approaches that offer detailed descriptions of the flow for a more accurate diagnosis of cardiovascular system diseases. This PhD project concerns the development of novel methods for blood flow imaging. After studying the state-of-the-art in the field, a few approaches have been examined in depth up to their experimental validation, both in technical and clinical environments, on a powerful ultrasound research platform (ULA-OP). Real-time novel vector methods implemented on ULA-OP were compared to standard Doppler methods in a clinical study. The results attest the benefits of the vector methods in terms of accuracy and repeatability. Plane-wave transmissions were exploited to improve the transverse oscillation imaging method. Double oscillating fields were produced in large regions and exploited for the vectorial description of blood flow at high frame rates. Blood flow maps were obtained by plane waves coupled to a novel velocity estimation algorithm operating in the frequency domain. The new method was demonstrated capable of high accuracy and reduced computational load by simulations and experiments (also in vivo). The investigation of blood flow inside the common carotid artery has revealed the hemodynamic details with unprecedented quality. A software solution implemented on a graphic processing unit (GPU) board was suggested and tested to reduce the computational time and support the clinical employment of the method
2

Fluid dynamic assessments of spiral flow induced by vascular grafts

Kokkalis, Efstratios January 2014 (has links)
Peripheral vascular grafts are used for the treatment of peripheral arterial disease and arteriovenous grafts for vascular access in end stage renal disease. The development of neo-intimal hyperplasia and thrombosis in the distal anastomosis remains the main reason for occlusion in that region. The local haemodynamics produced by a graft in the host vessel is believed to significantly affect endothelial function. Single spiral flow is a normal feature in medium and large sized vessels and it is induced by the anatomical structure and physiological function of the cardiovascular system. Grafts designed to generate a single spiral flow in the distal anastomosis have been introduced in clinical practice and are known as spiral grafts. In this work, spiral peripheral vascular and arteriovenous grafts were compared with conventional grafts using ultrasound and computational methods to identify their haemodynamic differences. Vascular-graft flow phantoms were developed to house the grafts in different surgical configurations. Mimicking components, with appropriate acoustic properties, were chosen to minimise ultrasound beam refraction and distortion. A dual-beam two-dimensional vector Doppler technique was developed to visualise and quantify vortical structures downstream of each graft outflow in the cross-flow direction. Vorticity mapping and measurements of circulation were acquired based on the vector Doppler data. The flow within the vascular-graft models was simulated with computed tomography based image-guided modelling for further understanding of secondary flow motions and comparison with the experimental results. The computational assessments provided a three-dimensional velocity field in the lumen of the models allowing a range of fluid dynamic parameters to be predicted. Single- or double-spiral flow patterns consisting of a dominant and a smaller vortex were detected in the outflow of the spiral grafts. A double- triple- or tetra-spiral flow pattern was found in the outflow of the conventional graft, depending on model configuration and Reynolds number. These multiple-spiral patterns were associated with increased flow stagnation, separation and instability, which are known to be detrimental for endothelial behaviour. Increased in-plane mixing and wall shear stress, which are considered atheroprotective in normal vessels, were found in the outflow of the spiral devices. The results from the experimental approach were in agreement with those from the computational approach. This study applied ultrasound and computational methods to vascular-graft phantoms in order to characterise the flow field induced by spiral and conventional peripheral vascular and arteriovenous grafts. The results suggest that spiral grafts are associated with advanced local haemodynamics that may protect endothelial function and thereby may prevent their outflow anastomosis from neo-intimal hyperplasia and thrombosis. Consequently this work supports the hypothesis that spiral grafts may decrease outflow stenosis and hence improve patency rates in patients.

Page generated in 0.0369 seconds