Spelling suggestions: "subject:"detector flow imaging"" "subject:"colector flow imaging""
1 |
From 2D to 3D cardiovascular ultrafast ultrasound imaging : new insights in shear wave elastography and blood flow imaging / De l'imagerie échographique ultrarapide cardiovasculaire 2D vers le 3D : nouvelles perspectives en élastographie par des ondes de cisaillement et de l'imagerie du flux sanguinCorreia, Mafalda Filipa Rodrigues 22 November 2016 (has links)
Ces travaux de thèse portent sur le développement de nouvelles modalités d’imagerie cardiovasculaire basé sur l’utilisation de l'imagerie ultrarapide 2D et 3D. Les modalités d’imagerie développées dans cette thèse appartiennent au domaine de de l’élastographie par onde de cisaillement et de l'imagerie Doppler des flux sanguins.Dans un premier temps, la technique de l’élastographie par onde de cisaillement du myocarde a été développée pour les applications cliniques. Une approche d'imagerie non-linéaire a été utilisée pour améliorer l’estimation de vitesse des ondes de cisaillement (ou la rigidité des tissus cardiaques) de manière non invasive et localisée. La validation de cette nouvelle approche de « l’imagerie par sommation cohérente harmonique ultrarapide » a été réalisée in vitro et la faisabilité in vivo a été testée chez l’humain. Dans un second temps, nous avons utilisé cette technique sur des patients lors de deux essais cliniques, chacun ciblant une population différente (adultes et enfants). Nous avons étudié la possibilité d’évaluer quantitativement la rigidité des tissus cardiaques par élastographie chez des volontaires sains, ainsi que chez des malades souffrant de cardiomyopathie hypertrophique. Les résultats ont montré que l’élastographie pourrait devenir un outil d'imagerie pertinent et robuste pour évaluer la rigidité du muscle cardiaque en pratique clinique. Par ailleurs, nous avons également développé une nouvelle approche appelée « imagerie de tenseur élastique 3-D » pour mesurer quantitativement les propriétés élastiques des tissus anisotropes comme le myocarde. Ces techniques ont été testées in vitro sur des modèles de de gels isotropes transverses. La faisabilité in vivo de l’élastographie par onde cisaillement à trois-dimensions a été également évaluée sur un muscle squelettique humain.D'autre part, nous avons développé une toute nouvelle modalité d’imagerie ultrasonore des flux coronariens basée sur l’imagerie Doppler ultrarapide. Cette technique nous a permis d'imager la circulation coronarienne avec une sensibilité élevée, grâce notamment au développement d’un nouveau filtre adaptatif permettant de supprimer le signal du myocarde en mouvement, basé sur la décomposition en valeurs singulières (SVD). Des expériences à thorax ouvert chez le porc ont permis d'évaluer et de valider notre technique et les résultats ont montré que la circulation coronaire intramurale, peut être évaluée sur des vaisseaux de diamètres allant jusqu’à 100 µm. La faisabilité sur l’homme a été démontrée chez l’enfant en imagerie clinique transthoracique.Enfin, nous avons développé une nouvelle approche d’imagerie des flux sanguins, « l’imagerie ultrarapide 3-D des flux», une nouvelle technique d'imagerie quantitative des flux. Nous avons démontré que cette technique permet d’évaluer le débit volumétrique artériel directement en un seul battement cardiaque, indépendamment de l'utilisateur. Cette technique a été mise en place à l'aide d'une sonde matricielle 2-D et d’un prototype d’échographe ultrarapide 3-D développé au sein du laboratoire. Nous avons évalué et validé notre technique in vitro sur des fantômes artériels, et la faisabilité in vivo a été démontrée sur des artères carotides humaines. / This thesis was focused on the development of novel cardiovascular imaging applications based on 2-D and 3-D ultrafast ultrasound imaging. More specifically, new technical and clinical developments of myocardial shear wave elastography and ultrafast blood flow imaging are presented in this manuscript.At first, myocardial shear wave elastography was developed for transthoracic imaging and improved by a non-linear imaging approach to non-invasively and locally assess shear wave velocity measurements, and consequently tissue stiffness in the context of cardiac imaging. This novel imaging approach (Ultrafast Harmonic Coherent Compounding) was tested and validated in-vitro and the in vivo feasibility was performed in humans for biomechanical evaluation of the cardiac muscle wall, the myocardium. Then, we have translated shear wave elastography to the clinical practice within two clinical trials, each one with a different population (adults and children). In both clinical trials, we have studied the capability of shear wave elastography to assess quantitatively myocardial stiffness in healthy volunteers and in patients suffering from hypertrophic cardiomyopathy. The results in the adult population indicated that shear wave elastography may become an effective imaging tool to assess cardiac muscle stiffness in clinical practice and help the characterization of hypertrophic cardiomyopathy. Likewise, we have also translated Shear Wave Elastography into four-dimensions and we have developed a new approach to map tissue elastic anisotropy in 3-D. 3-D Elastic Tensor Imaging allowed us to estimate quantitatively in a single acquisition the elastic properties of fibrous tissues. This technique was tested and validated in vitro in transverse isotropic models. The in-vivo feasibility of 3D elastic tensor imaging was also assessed in a human skeletal muscle.In parallel, we have developed a novel imaging technique for the non-invasive and non-radiative imaging of coronary circulation using ultrafast Doppler. This approach allowed us to image blood flow of the coronary circulation with high sensitivity. A new adaptive filter based on the singular value decomposition was used to remove the clutter signal of moving tissues. Open-chest swine experiments allowed to evaluate and validate this technique and results have shown that intramural coronary circulation, with diameters up to 100 µm, could be assessed. The in-vivo transthoracic feasibility was also demonstrated in humans in pediatric cardiology.Finally, we have developed a novel imaging modality to map quantitatively the blood flow in 3-D: 3-D ultrafast ultrasound flow imaging. We demonstrated that 3-D ultrafast ultrasound flow imaging can assess non-invasively, user-independently and directly volumetric flow rates in large arteries within a single heartbeat. We have evaluated and validated our technique in vitro in arterial phantoms using a 2-D matrix-array probe and a customized, programmable research 3-D ultrafast ultrasound system, and the in-vivo feasibility was demonstrated in human carotid arteries.
|
Page generated in 0.0823 seconds