• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 33
  • 13
  • 13
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Improvement Of Corpus-based Semantic Word Similarity Using Vector Space Model

Esin, Yunus Emre 01 July 2009 (has links) (PDF)
This study presents a new approach for finding semantically similar words from corpora using window based context methods. Previous studies mainly concentrate on either finding new combination of distance-weight measurement methods or proposing new context methods. The main difference of this new approach is that this study reprocesses the outputs of the existing methods to update the representation of related word vectors used for measuring semantic distance between words, to improve the results further. Moreover, this novel technique provides a solution to the data sparseness of vectors which is a common problem in methods which uses vector space model. The main advantage of this new approach is that it is applicable to many of the existing word similarity methods using the vector space model. The other and the most important advantage of this approach is that it improves the performance of some of these existing word similarity measuring methods.
22

Generalized Hebbian Algorithm for Dimensionality Reduction in Natural Language Processing

Gorrell, Genevieve January 2006 (has links)
The current surge of interest in search and comparison tasks in natural language processing has brought with it a focus on vector space approaches and vector space dimensionality reduction techniques. Presenting data as points in hyperspace provides opportunities to use a variety of welldeveloped tools pertinent to this representation. Dimensionality reduction allows data to be compressed and generalised. Eigen decomposition and related algorithms are one category of approaches to dimensionality reduction, providing a principled way to reduce data dimensionality that has time and again shown itself capable of enabling access to powerful generalisations in the data. Issues with the approach, however, include computational complexity and limitations on the size of dataset that can reasonably be processed in this way. Large datasets are a persistent feature of natural language processing tasks. This thesis focuses on two main questions. Firstly, in what ways can eigen decomposition and related techniques be extended to larger datasets? Secondly, this having been achieved, of what value is the resulting approach to information retrieval and to statistical language modelling at the ngram level? The applicability of eigen decomposition is shown to be extendable through the use of an extant algorithm; the Generalized Hebbian Algorithm (GHA), and the novel extension of this algorithm to paired data; the Asymmetric Generalized Hebbian Algorithm (AGHA). Several original extensions to the these algorithms are also presented, improving their applicability in various domains. The applicability of GHA to Latent Semantic Analysisstyle tasks is investigated. Finally, AGHA is used to investigate the value of singular value decomposition, an eigen decomposition variant, to ngram language modelling. A sizeable perplexity reduction is demonstrated.
23

Special Index And Retrieval Mechanism For Ontology Based Medical Domain Search Engines

Kubilay, Mustafa 01 September 2005 (has links) (PDF)
This thesis focuses on index and retrieval mechanism of an ontology based medical domain search engine. First, indexing techniques and retrieval methods are reviewed. Then, a special indexing and retrieval mechanism are introduced. This thesis also specifies the functional requirements of these mechanisms. Finally, an evaluation is given by indicating the positive and negative aspects of mechanisms.
24

Sistema de recomendação para bibliotecas digitais sob a perspectiva da web semântica / A recommender system to digital llibraries under semantic web perspective

Lopes, Giseli Rabello January 2007 (has links)
Atualmente, pesquisadores e acadêmicos têm beneficiado-se muito com o crescimento acelerado das tecnologias Web, pois os resultados de pesquisa podem ser publicados e acessados eletronicamente tão logo a mesma tenha sido realizada. Esta possibilidade é vantajosa na medida em que minimiza as barreiras de tempo e espaço associadas à publicação tradicional. Neste contexto, surgem as Bibliotecas Digitais como repositórios de dados que, além dos documentos digitais propriamente ditos, ou de apontadores para estes documentos, armazenam os metadados associados. Para permitir que diferentes Bibliotecas Digitais possam interoperar surgiu a Open Archives Initiative (OAI) e, para resolver a questão da padronização dos metadados utilizados pelos repositórios, foi criado o formato Dublin Core (DC). Por outro lado, a enorme quantidade de documentos digitais disponíveis na Web tem causado o fenômeno conhecido como “sobrecarga de informação”. Com o objetivo de suprir esta dificuldade, Sistemas de Recomendação têm sido propostos e desenvolvidos. Estes sistemas visam prover uma interface alternativa para tecnologias de filtragem e recuperação de informações, tendo como foco a predição daqueles itens ou partes da informação que o usuário acharia interessante e útil. Portanto, os Sistemas de Recomendação atuam baseados em personalização da informação sendo que as predições geralmente são realizadas utilizando-se um perfil de cada usuário. A personalização está relacionada com o modo pelo qual a informação e serviços podem ser ajustados às necessidades específicas de um usuário ou comunidade. Esta dissertação descreve um Sistema de Recomendação de artigos científicos, armazenados em bibliotecas digitais. Este sistema é dirigido à comunidade científica da área da Ciência da Computação. Tecnologicamente, o sistema proposto foi desenvolvido sob a perspectiva da Web Semântica, à medida que faz uso de suas tecnologias emergentes tais como: uso de metadados padrão para a descrição de documentos - Dublin Core, uso do padrão XML para a descrição do perfil do usuário - Currículo Lattes, e provedores de serviços e de dados (OAI) envolvidos no processo de geração das recomendações. Este trabalho ainda apresenta e discute alguns resultados de experimentos baseados em avaliações quantitativas e qualitativas de recomendações geradas pelo sistema. / Currently, researchers and academics have been benefited by the expressive growth of web technologies, due to the possibility of publishing and accessing research results as soon as they are achieved. This possibility is advantageous as it minimizes the time and space barriers that traditional publications present. In this context, Digital Libraries emerged as data repositories that, beyond digital documents or links to them, store associated metadata. To allow the interoperability among different Digital Libraries, the Open Archives Initiative (OAI) was defined and, to solve the problem of metadata standardization, the Dublin Core standard (DC) was created. On the other hand, the great amount of available digital documents in the Web has caused the phenomenon known as “information overload”. In order to avoid this difficulty, Recommender Systems have been proposed and developed. These systems intend to provide an alternative interface for information filtering and retrieval technologies, focusing on the prediction of items or information parts that are interesting and useful for the user. Therefore, Recommender Systems act based on information personalization, and the predictions are generally generated using each user’s profile. The personalization is related to the way the information and the provided services can be adjusted to the specific necessities of a user or community. This dissertation describes a Recommender System for scientific articles stored in digital libraries. This system is geared towards the Computer Science scientific community. Technologically, the proposed system was developed under the Semantic Web perspective, as it explores its emergent technologies such as: use of standard metadata for document description - Dublin Core, use of the XML standard for users’ profile description - Lattes Curriculum Vitae, and services and data providers (OAI) involved on the recommendations generation process. In addition, this work presents and discusses some experimental results; the experiments are based on quantitative and qualitative evaluations of recommendations generated by the system.
25

Fixed Verse Generation using Neural Word Embeddings

January 2016 (has links)
abstract: For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method to classify poems into subtypes based on content with an accuracy of 92%. The system then uses a two-layer neural network to generate poetry based on word similarities and word movements in a 50-dimensional vector space. The verses generated by the system are evaluated using rhyme, rhythm, syllable counts and stress patterns. These computational features of language are considered for generating haikus, limericks and iambic pentameter verses. The generated poems are evaluated using a Turing test on both experts and non-experts. The user study finds that only 38% computer generated poems were correctly identified by nonexperts while 65% of the computer generated poems were correctly identified by experts. Although the system does not pass the Turing test, the results from the Turing test suggest an improvement of over 17% when compared to previous methods which use Turing tests to evaluate poetry generators. / Dissertation/Thesis / Masters Thesis Computer Science 2016
26

Sistema de recomendação para bibliotecas digitais sob a perspectiva da web semântica / A recommender system to digital llibraries under semantic web perspective

Lopes, Giseli Rabello January 2007 (has links)
Atualmente, pesquisadores e acadêmicos têm beneficiado-se muito com o crescimento acelerado das tecnologias Web, pois os resultados de pesquisa podem ser publicados e acessados eletronicamente tão logo a mesma tenha sido realizada. Esta possibilidade é vantajosa na medida em que minimiza as barreiras de tempo e espaço associadas à publicação tradicional. Neste contexto, surgem as Bibliotecas Digitais como repositórios de dados que, além dos documentos digitais propriamente ditos, ou de apontadores para estes documentos, armazenam os metadados associados. Para permitir que diferentes Bibliotecas Digitais possam interoperar surgiu a Open Archives Initiative (OAI) e, para resolver a questão da padronização dos metadados utilizados pelos repositórios, foi criado o formato Dublin Core (DC). Por outro lado, a enorme quantidade de documentos digitais disponíveis na Web tem causado o fenômeno conhecido como “sobrecarga de informação”. Com o objetivo de suprir esta dificuldade, Sistemas de Recomendação têm sido propostos e desenvolvidos. Estes sistemas visam prover uma interface alternativa para tecnologias de filtragem e recuperação de informações, tendo como foco a predição daqueles itens ou partes da informação que o usuário acharia interessante e útil. Portanto, os Sistemas de Recomendação atuam baseados em personalização da informação sendo que as predições geralmente são realizadas utilizando-se um perfil de cada usuário. A personalização está relacionada com o modo pelo qual a informação e serviços podem ser ajustados às necessidades específicas de um usuário ou comunidade. Esta dissertação descreve um Sistema de Recomendação de artigos científicos, armazenados em bibliotecas digitais. Este sistema é dirigido à comunidade científica da área da Ciência da Computação. Tecnologicamente, o sistema proposto foi desenvolvido sob a perspectiva da Web Semântica, à medida que faz uso de suas tecnologias emergentes tais como: uso de metadados padrão para a descrição de documentos - Dublin Core, uso do padrão XML para a descrição do perfil do usuário - Currículo Lattes, e provedores de serviços e de dados (OAI) envolvidos no processo de geração das recomendações. Este trabalho ainda apresenta e discute alguns resultados de experimentos baseados em avaliações quantitativas e qualitativas de recomendações geradas pelo sistema. / Currently, researchers and academics have been benefited by the expressive growth of web technologies, due to the possibility of publishing and accessing research results as soon as they are achieved. This possibility is advantageous as it minimizes the time and space barriers that traditional publications present. In this context, Digital Libraries emerged as data repositories that, beyond digital documents or links to them, store associated metadata. To allow the interoperability among different Digital Libraries, the Open Archives Initiative (OAI) was defined and, to solve the problem of metadata standardization, the Dublin Core standard (DC) was created. On the other hand, the great amount of available digital documents in the Web has caused the phenomenon known as “information overload”. In order to avoid this difficulty, Recommender Systems have been proposed and developed. These systems intend to provide an alternative interface for information filtering and retrieval technologies, focusing on the prediction of items or information parts that are interesting and useful for the user. Therefore, Recommender Systems act based on information personalization, and the predictions are generally generated using each user’s profile. The personalization is related to the way the information and the provided services can be adjusted to the specific necessities of a user or community. This dissertation describes a Recommender System for scientific articles stored in digital libraries. This system is geared towards the Computer Science scientific community. Technologically, the proposed system was developed under the Semantic Web perspective, as it explores its emergent technologies such as: use of standard metadata for document description - Dublin Core, use of the XML standard for users’ profile description - Lattes Curriculum Vitae, and services and data providers (OAI) involved on the recommendations generation process. In addition, this work presents and discusses some experimental results; the experiments are based on quantitative and qualitative evaluations of recommendations generated by the system.
27

Sistema de recomendação para bibliotecas digitais sob a perspectiva da web semântica / A recommender system to digital llibraries under semantic web perspective

Lopes, Giseli Rabello January 2007 (has links)
Atualmente, pesquisadores e acadêmicos têm beneficiado-se muito com o crescimento acelerado das tecnologias Web, pois os resultados de pesquisa podem ser publicados e acessados eletronicamente tão logo a mesma tenha sido realizada. Esta possibilidade é vantajosa na medida em que minimiza as barreiras de tempo e espaço associadas à publicação tradicional. Neste contexto, surgem as Bibliotecas Digitais como repositórios de dados que, além dos documentos digitais propriamente ditos, ou de apontadores para estes documentos, armazenam os metadados associados. Para permitir que diferentes Bibliotecas Digitais possam interoperar surgiu a Open Archives Initiative (OAI) e, para resolver a questão da padronização dos metadados utilizados pelos repositórios, foi criado o formato Dublin Core (DC). Por outro lado, a enorme quantidade de documentos digitais disponíveis na Web tem causado o fenômeno conhecido como “sobrecarga de informação”. Com o objetivo de suprir esta dificuldade, Sistemas de Recomendação têm sido propostos e desenvolvidos. Estes sistemas visam prover uma interface alternativa para tecnologias de filtragem e recuperação de informações, tendo como foco a predição daqueles itens ou partes da informação que o usuário acharia interessante e útil. Portanto, os Sistemas de Recomendação atuam baseados em personalização da informação sendo que as predições geralmente são realizadas utilizando-se um perfil de cada usuário. A personalização está relacionada com o modo pelo qual a informação e serviços podem ser ajustados às necessidades específicas de um usuário ou comunidade. Esta dissertação descreve um Sistema de Recomendação de artigos científicos, armazenados em bibliotecas digitais. Este sistema é dirigido à comunidade científica da área da Ciência da Computação. Tecnologicamente, o sistema proposto foi desenvolvido sob a perspectiva da Web Semântica, à medida que faz uso de suas tecnologias emergentes tais como: uso de metadados padrão para a descrição de documentos - Dublin Core, uso do padrão XML para a descrição do perfil do usuário - Currículo Lattes, e provedores de serviços e de dados (OAI) envolvidos no processo de geração das recomendações. Este trabalho ainda apresenta e discute alguns resultados de experimentos baseados em avaliações quantitativas e qualitativas de recomendações geradas pelo sistema. / Currently, researchers and academics have been benefited by the expressive growth of web technologies, due to the possibility of publishing and accessing research results as soon as they are achieved. This possibility is advantageous as it minimizes the time and space barriers that traditional publications present. In this context, Digital Libraries emerged as data repositories that, beyond digital documents or links to them, store associated metadata. To allow the interoperability among different Digital Libraries, the Open Archives Initiative (OAI) was defined and, to solve the problem of metadata standardization, the Dublin Core standard (DC) was created. On the other hand, the great amount of available digital documents in the Web has caused the phenomenon known as “information overload”. In order to avoid this difficulty, Recommender Systems have been proposed and developed. These systems intend to provide an alternative interface for information filtering and retrieval technologies, focusing on the prediction of items or information parts that are interesting and useful for the user. Therefore, Recommender Systems act based on information personalization, and the predictions are generally generated using each user’s profile. The personalization is related to the way the information and the provided services can be adjusted to the specific necessities of a user or community. This dissertation describes a Recommender System for scientific articles stored in digital libraries. This system is geared towards the Computer Science scientific community. Technologically, the proposed system was developed under the Semantic Web perspective, as it explores its emergent technologies such as: use of standard metadata for document description - Dublin Core, use of the XML standard for users’ profile description - Lattes Curriculum Vitae, and services and data providers (OAI) involved on the recommendations generation process. In addition, this work presents and discusses some experimental results; the experiments are based on quantitative and qualitative evaluations of recommendations generated by the system.
28

Overcoming The New Item Problem In Recommender Systems : A Method For Predicting User Preferences Of New Items

Jonason, Alice January 2023 (has links)
This thesis addresses the new item problem in recommender systems, which pertains to the challenges of providing personalized recommendations for items which have limited user interaction history. The study proposes and evaluates a method for generating personalized recommendations for movies, shows, and series on one of Sweden’s largest streaming platforms. By treating these items as documents of the attributes which characterize them and utilizing item similarity through the k-nearest neighbor algorithm, user preferences for new items are predicted based on users’ past preferences for similar items. Two models for feature representation, namely the Vector Space Model (VSM) and a Latent Dirichlet Allocation (LDA) topic model, are considered and compared. The k-nearest neighbor algorithm is utilized to identify similar items for each type of representation, with cosine distance for VSM and Kullback-Leibler divergence for LDA. Furthermore, three different ways of predicting user preferences based on the preferences for the neighbors are presented and compared. The performances of the models in terms of predicting preferences for new items are evaluated with historical streaming data. The results indicate the potential of leveraging item similarity and previous streaming history to predict preferences of new items. The VSM representation proved more successful; using this representation, 77 percent of actual positive instances were correctly classified as positive. For both types of representations, giving higher weight to preferences for more similar items when predicting preferences yielded higher F2 scores, and optimizing for the F2 score implied that recommendations should be made when there is the slightest indication of preference for the neighboring items. The results indicate that the neighbors identified through the VSM representation were more representative of user preferences for new items, compared to those identified through the LDA representation.
29

Automatic Identification of Topic Tags from Texts Based on Expansion-Extraction Approach

Yang, Seungwon 22 January 2014 (has links)
Identifying topics of a textual document is useful for many purposes. We can organize the documents by topics in digital libraries. Then, we could browse and search for the documents with specific topics. By examining the topics of a document, we can quickly understand what the document is about. To augment the traditional manual way of topic tagging tasks, which is labor-intensive, solutions using computers have been developed. This dissertation describes the design and development of a topic identification approach, in this case applied to disaster events. In a sense, this study represents the marriage of research analysis with an engineering effort in that it combines inspiration from Cognitive Informatics with a practical model from Information Retrieval. One of the design constraints, however, is that the Web was used as a universal knowledge source, which was essential in accessing the required information for inferring topics from texts. Retrieving specific information of interest from such a vast information source was achieved by querying a search engine's application programming interface. Specifically, the information gathered was processed mainly by incorporating the Vector Space Model from the Information Retrieval field. As a proof of concept, we subsequently developed and evaluated a prototype tool, Xpantrac, which is able to run in a batch mode to automatically process text documents. A user interface of Xpantrac also was constructed to support an interactive semi-automatic topic tagging application, which was subsequently assessed via a usability study. Throughout the design, development, and evaluation of these various study components, we detail how the hypotheses and research questions of this dissertation have been supported and answered. We also present that our overarching goal, which was the identification of topics in a human-comparable way without depending on a large training set or a corpus, has been achieved. / Ph. D.
30

Homotopické struktury v algebře, geometrii a matematické fyzice / Homotopické struktury v algebře, geometrii a matematické fyzice

Černohorská, Eva January 2011 (has links)
Title: Homotopic structures in algebra, geometry and mathematical physics Author: Eva Černohorská Department: Mathematical Institute of Charles University Supervisor: RNDr. Martin Markl, DrSc., Institute of Mathematics of the Academy of Sciences of the Czech Republic, Mathematical Institute of Charles University Abstract: The aim of this thesis was to generalize the result that associative algebras on finite dimensional vector spaces can be described using differentials on free algebras. This result is limited by the duality of vector spaces. If we assume that the underlying space has a linear topology, then we can use the duality between discrete and linearly compact (profinite) vector spaces. To generalize the notion of an algebra, we need to recall the completed tensor product on linear vector spaces. Since this topics does not seem to be sufficiently covered by the literature, this thesis could serve also as a comprehensive text on linear vector spaces and their completed tensor products. We prove that also A∞ structures on linearly compact vector spaces could be represented by differentials on a free algebra. Keywords: Strongly homotopy associative algebra, linear topological vector space, Pontryagin duality, completed tensor product, differential

Page generated in 0.0614 seconds