• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VPAStab: stabilised vector-Padé approximation with application to linear systems.

Graves-Morris, Peter R. January 2003 (has links)
No / An algorithm called VPAStab is given for the acceleration of convergence of a sequence of vectors. It combines a method of vector-Padé approximation with a successful technique for stabilisation. More generally, this algorithm is designed to find the fixed point of the generating function of the given sequence of vectors, analogously to the way in which ordinary Padé approximants can accelerate the convergence of a given scalar sequence. VPAStab is justified in the context of its application to the solution of a large sparse system of linear equations. The possible breakdowns of the algorithm are listed. Numerical experiments indicate that these breakdowns can be classified either as pivot-type (type L) or as ghost-type (type D).
2

BiCGStab, VPAStab and an adaptation to mildly nonlinear systems.

Graves-Morris, Peter R. January 2007 (has links)
No / The key equations of BiCGStab are summarised to show its connections with Pade and vector-Pade approximation. These considerations lead naturally to stabilised vector-Pade approximation of a vector-valued function (VPAStab), and an algorithm for the acceleration of convergence of a linearly generated sequence of vectors. A generalisation of this algorithm for the acceleration of convergence of a nonlinearly generated system is proposed here, and comparative numerical results are given.
3

On the vector epsilon algorithm for solving linear systems of equations

Graves-Morris, Peter R., Salam, A. 12 May 2009 (has links)
No / The four vector extrapolation methods, minimal polynomial extrapolation, reduced rank extrapolation, modified minimal polynomial extrapolation and the topological epsilon algorithm, when applied to linearly generated vector sequences are Krylov subspace methods and it is known that they are equivalent to some well-known conjugate gradient type methods. However, the vector -algorithm is an extrapolation method, older than the four extrapolation methods above, and no similar results are known for it. In this paper, a determinantal formula for the vector -algorithm is given. Then it is shown that, when applied to a linearly generated vector sequence, the algorithm is also a Krylov subspace method and for a class of matrices the method is equivalent to a preconditioned Lanczos method. A new determinantal formula for the CGS is given, and an algebraic comparison between the vector -algorithm for linear systems and CGS is also given.

Page generated in 0.0352 seconds