• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differentiating decomposition rates within the ridge-slough microtopography of the central Florida Everglades

Unknown Date (has links)
The relative rates of detrital decomposition in four vegetation communities within the Everglades' ridge-slough microtopography were evaluated during two trials. Litterbags with community-specific detritus in proportion to each community's composition were put into the four communities; namely, submerged marsh, emergent marsh, short Cladium ridge, and tall Cladium ridge. These litterbags were paired with litterbags containing control leaf litter from Chrysobalanus icaco and Salix caroliniana during the wet and dry season trials, respectively. No regional differences in decomposition were shown, but there were significant differences across communities, attributed to the initial C:N ratio of the detritus, with the fastest decomposition occurring in the deepest submerged marsh followed by emergent marsh, and the shallower ridge communities had equally slower decomposition. Additionally, both controls followed the same pattern. Thus, decomposition contributes to an active self-maintenance mechanism within the vegetation communities which ultimately helps to conserve the ridges and sloughs. / by Sheryl R. van der Heiden. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
2

Phosphate-associated phenotype plasticity as a driver of cattail invasion in the sawgass-dominated Everglades

Unknown Date (has links)
In plants, phenotypic plasticity, the ability to morphologically adapt to new or broad environmental conditions, is a consequence of long-term evolutionary genetic processes. Thus, plants adapted to low phosphate (P) environments exhibit only limited plasticity to take advantage of nutrient enrichment, a global phenomenon in terrestrial and aquatic environments. In the face of anthropogenic P-enrichment, low nutrient adapted resident plant species are frequently displaced by species with high morphological and genetic plasticity. However, it remains unclear whether plasticity is systemically expressed across molecular, biochemical, physiological, and morphological processes that ultimately contribute to the root and shoot phenotypes of plants. In this study, we demonstrated high plasticity in root-borne traits of sawgrass (Cladium jamaicense), the dominant plant species of the P-impoverished Everglades, and counter the idea of inflexibility in low P adapted species. However, sawgras s expressed inflexibility in processes contributing to shoot phenotypes, in contrast to cattail, which was highly plastic in shoot characteristics vii in response to P enrichment. In fact, plasticity in cattail shoots is likely a function of its growth response to P that was globally regulated by P-availability at the level of transcription. Plasticity and inflexibility in the growth of both species also diverged in their allocation of P to the chloroplast for growth in cattail versus the vacuole for P storage in sawgrass. In the Everglades, anthropogenic P-enrichment has changed the environment from a P-limited condition, where plasticity in root-borne traits of sawgrass was advantageous, to one of light-competition, where plasticity in shoot-borne traits drives competitive dominance by cattail. / We hypothesize that these shifts in plasticity competitive advantage from root to shoots has been a major driver of cattail expansion in the Everglades ecosystem. Further, this understanding of how natural plant species adapt and shift in response to nutrient availability could also be used a model system to optimize agricultural systems to increase efficiencies in food production and protect low nutrient adapted natural systems from cultural eutrophication. / by James Webb. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 200?. Mode of access: World Wide Web.

Page generated in 0.0862 seconds