• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De-icing salt and the roadside environment : Air-borne exposure, damage to Norway spruce and system monitoring

Blomqvist, Göran January 2001 (has links)
After decades of investigation, we still have to deal withthe problem of environmental effects of the use of de-icingsalt on roads. Lacking useful indicators of the system, westill do not know the environmental utility of ameliorativemeasures taken. The thesis aims at i) describing the system of de-icing practices and theirenvironmental effects with special reference to the exposure ofthe roadside environment to air-borne salt and damage to Norwayspruce seedlings and ii) at proposing indicators for afollow-up system. By collecting bulk deposition and relatingthe deposition pattern to factors concerning wind androad-maintenance characteristics, the influence of thesefactors on air-borne exposure is investigated. By exposingNorway spruce (Picea abies(L.) Karst.) seedlings to roadsideconditions the influence ofsalt exposure on the degree ofdamage is investigated. Based on a comparison of severalsystems of monitoring, improvements are suggested by proposingnew indicators for salt use and its environmental effects. A large part of the salt that is applied on the road surfacewill be transported by air and deposited on the ground in theroadside. While the vast majority of the salt will be depositedwithin some tens of metres of the road, some may still be windtransported several hundred metres away. The wind directionplays an important role for the deposition already at adistance of some ten metres from the road. Wind speedinfluences the distance to which the salt is transported.Chloride concentration in unwashed needles collected after thesalting season is positively related to the bulk deposition ofCl during the exposure. The degree of damage can be describedby a sigmoid curve of response to the Cl concentration inneedles. Improvements to the follow-up system are suggested byproposing indicators of the driving forces, pressures, states,impacts and possible responses as regards the undesired impactson water resources, vegetation and the roadside scenery as asocietal asset. <b>Keywords:</b>road, de-icing salt, air-borne, environmentalimpact, vegetation damage, Norway spruce, seedling, follow-up,monitoring, indicator
2

De-icing salt and the roadside environment : Air-borne exposure, damage to Norway spruce and system monitoring

Blomqvist, Göran January 2001 (has links)
<p>After decades of investigation, we still have to deal withthe problem of environmental effects of the use of de-icingsalt on roads. Lacking useful indicators of the system, westill do not know the environmental utility of ameliorativemeasures taken. The thesis aims at</p><p>i) describing the system of de-icing practices and theirenvironmental effects with special reference to the exposure ofthe roadside environment to air-borne salt and damage to Norwayspruce seedlings and ii) at proposing indicators for afollow-up system. By collecting bulk deposition and relatingthe deposition pattern to factors concerning wind androad-maintenance characteristics, the influence of thesefactors on air-borne exposure is investigated. By exposingNorway spruce (<i>Picea abies</i>(L.) Karst.) seedlings to roadsideconditions the influence ofsalt exposure on the degree ofdamage is investigated. Based on a comparison of severalsystems of monitoring, improvements are suggested by proposingnew indicators for salt use and its environmental effects.</p><p>A large part of the salt that is applied on the road surfacewill be transported by air and deposited on the ground in theroadside. While the vast majority of the salt will be depositedwithin some tens of metres of the road, some may still be windtransported several hundred metres away. The wind directionplays an important role for the deposition already at adistance of some ten metres from the road. Wind speedinfluences the distance to which the salt is transported.Chloride concentration in unwashed needles collected after thesalting season is positively related to the bulk deposition ofCl during the exposure. The degree of damage can be describedby a sigmoid curve of response to the Cl concentration inneedles. Improvements to the follow-up system are suggested byproposing indicators of the driving forces, pressures, states,impacts and possible responses as regards the undesired impactson water resources, vegetation and the roadside scenery as asocietal asset.</p><p><b>Keywords:</b>road, de-icing salt, air-borne, environmentalimpact, vegetation damage, Norway spruce, seedling, follow-up,monitoring, indicator</p>
3

Comparative Case Studies on Vegetation Recovery from Hurricane Damage along theSouthern Coast of the US using Remote Sensing and GIS

Akter, Rabeya January 2020 (has links)
No description available.
4

The utilisation of satellite images for the detection of elephant induced vegetation change patterns

Simms, Chenay 02 1900 (has links)
South Africa’s growing elephant populations are concentrated in relatively small enclosed protected areas resulting in the over utilisation of the available food sources. Elephants and other herbivores as well as other natural disturbances such as fires and droughts play an important role in maintaining savannah environments. When these disturbances become too concentrated in a particular area the vegetation composition may be negatively affected. Excessive damage to the vegetation would result from exceeding the capacity of a protected area to provide food resources. The effect of the 120 elephants on the vegetation of Welgevonden Private Game Reserve, is not known. The rugged terrain of this reserve makes it a difficult, time consuming and labour intensive exercise to conduct ground studies. Satellite images can be used as a monitoring tool for vegetation change and improve the quantity and quality of environmental data to be collected significantly, allowing more informed management decision-making. This study evaluated the use of satellite imagery for monitoring elephant induced vegetation change on Welgevonden Private Game Reserve. The LANDSAT Thematic Mapper multispectral images, acquired at two yearly intervals from 1993 until 2007 were used. However, no suitable images were available for the years 1997, 2001 and 2003. A series of vegetation change maps was produced and the distribution of water sources and fire occurrences mapped. The areas of change were then correlated with the spatial distribution of water points and fire occurances, with uncorrelated areas of change. This was analysed using large animal population trends, weather data and management practices. On the visual comparison of the vegetation maps, it was seen that over this time period there was some decrease and thinning of woodland, but the most notable change was the increase of open woodland and decrease in grasslands. Using only the digital change detection for the period 1993 to 2007, a general increase in vegetation cover is seen. But this generalisation is misleading, since comparing the digital change detection to the vegetation maps indicates that while vegetation cover may have increased, significant changes occurred in the vegetation types. Most of the areas of significant change that were identified showed a strong positive correlation with burnt areas. The distribution of the water sources could not be directly linked to the vegetation change although rainfall fluctuations seemed to have accelerated vegetation changes. Years with high game counts, such as 1999, also coincide with very low rainfall making it difficult to differentiate between the effects of heavy utilisation of vegetation and low rainfall. Furthermore, many of the initial vegetation changes could be the result of land use changes due to the introduction of browsers, selective grazers and elephants that allow for more natural utilisation of the vegetation. Remote sensing makes it possible to successfully track changes in vegetation and identify areas of potential elephant induced vegetation change. Vegetation changes caused by disturbances, such as fire and anthropogenic activities, can be accounted for but it is not possible to conclude with a high level of certainty that the further changes seen are solely a result of elephant damage. Further work is required to reliably isolate elephant induced vegetation changes, as well as to establish the effects these changes have on the ecosystem as a whole. / Environmental Sciences / (M. Sc. (Environmetal Sciences))
5

The utilisation of satellite images for the detection of elephant induced vegetation change patterns

Simms, Chenay 02 1900 (has links)
South Africa’s growing elephant populations are concentrated in relatively small enclosed protected areas resulting in the over utilisation of the available food sources. Elephants and other herbivores as well as other natural disturbances such as fires and droughts play an important role in maintaining savannah environments. When these disturbances become too concentrated in a particular area the vegetation composition may be negatively affected. Excessive damage to the vegetation would result from exceeding the capacity of a protected area to provide food resources. The effect of the 120 elephants on the vegetation of Welgevonden Private Game Reserve, is not known. The rugged terrain of this reserve makes it a difficult, time consuming and labour intensive exercise to conduct ground studies. Satellite images can be used as a monitoring tool for vegetation change and improve the quantity and quality of environmental data to be collected significantly, allowing more informed management decision-making. This study evaluated the use of satellite imagery for monitoring elephant induced vegetation change on Welgevonden Private Game Reserve. The LANDSAT Thematic Mapper multispectral images, acquired at two yearly intervals from 1993 until 2007 were used. However, no suitable images were available for the years 1997, 2001 and 2003. A series of vegetation change maps was produced and the distribution of water sources and fire occurrences mapped. The areas of change were then correlated with the spatial distribution of water points and fire occurances, with uncorrelated areas of change. This was analysed using large animal population trends, weather data and management practices. On the visual comparison of the vegetation maps, it was seen that over this time period there was some decrease and thinning of woodland, but the most notable change was the increase of open woodland and decrease in grasslands. Using only the digital change detection for the period 1993 to 2007, a general increase in vegetation cover is seen. But this generalisation is misleading, since comparing the digital change detection to the vegetation maps indicates that while vegetation cover may have increased, significant changes occurred in the vegetation types. Most of the areas of significant change that were identified showed a strong positive correlation with burnt areas. The distribution of the water sources could not be directly linked to the vegetation change although rainfall fluctuations seemed to have accelerated vegetation changes. Years with high game counts, such as 1999, also coincide with very low rainfall making it difficult to differentiate between the effects of heavy utilisation of vegetation and low rainfall. Furthermore, many of the initial vegetation changes could be the result of land use changes due to the introduction of browsers, selective grazers and elephants that allow for more natural utilisation of the vegetation. Remote sensing makes it possible to successfully track changes in vegetation and identify areas of potential elephant induced vegetation change. Vegetation changes caused by disturbances, such as fire and anthropogenic activities, can be accounted for but it is not possible to conclude with a high level of certainty that the further changes seen are solely a result of elephant damage. Further work is required to reliably isolate elephant induced vegetation changes, as well as to establish the effects these changes have on the ecosystem as a whole. / Environmental Sciences / (M. Sc. (Environmetal Sciences))

Page generated in 0.0823 seconds