• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Colonisation and succession along a South Wales trunk road : variation and change in relation to natural and human factors

Thomas, Hilary Susan Clarke January 1992 (has links)
No description available.
2

A Land Imprinter for Revegetation of Barren Land Areas Through Infiltration Control

Dixon, R. M., Simanton, J. R. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / A new minimum tillage implement, "the land imprinter," has been designed and fabricated, and is currently being tested. Its design is based on water infiltration control theory developed during the past decade. The land imprinter was developed primarily for establishing vegetation in barren land areas in semiarid and arid regions of the world. It simultaneously forms interconnected downslope and cross - slope corrugations that shed water and then infiltrate it precisely where vegetative growth is to be encouraged. This controlled short distance routing of water along short waterways into small reservoirs makes more rainwater available for seed germination and seedling establishment, and less water available for loss by surface runoff and evaporation. The imprinter has only one moving part, in the form of a massive compound roller and central axle which turn together as a rigid assembly during operation. The compound roller consists of two imprint capsules which are linked together on the axle shaft by an axle pulling clamp. The core of the imprint capsule is a hollow steel cylinder (1-m diameter and 1-m long) fabricated from 1.27-cm steel plate. A variety of imprint geometries are formed by welding short lengths of specially -cut steel angles (1.27 cm x 15.24 cm x 15.24 cm) to the outer surface of the cylindrical core. Ten imprint capsules with distinctly different geometric patterns of steel angles have been developed and fabricated. By pairing these capsules in as many ways as possible, 45 different geometric patterns can be imprinted. The patterns of steel angles perform a number of different tillage functions including (1) brush and soft rock crushing, (2) brush and rock imbedding, (3) runoff inducing and directing, (4) infiltration inducing and directing, (5) biomass concentrating, (6) seedbed forming, (7) surface and vertical mulching, (8) wind and water erosion controlling, (9) surface compacting, and (10) surface trenching and pitting. Advantages of the land imprinter as compared with alternative tillage methods include (1) greater stability, diversity, complexity, and precision of surface geometric patterns; (2) better control of point infiltration, runoff, erosion, and evaporation; and (3) greater utility in brush -covered, steeply - sloping, deeply gullied, and rocky land. The land imprinter should have widespread utility in both range and croplands because of its unique ability to mold runoff -watered seedbeds that increase the probability of seed germination and seedling establishment.
3

Rehabilitation of Copper Mine Tailing Slopes Using Municipal Sewage Effluent

Verma, Tika R., Ludeke, Kenneth L., Day, A. D. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / The suitability of treated municipal sewage effluent for the irrigation of deep- rooting plant material for the rehabilitation of copper mine tailings was studied at the Cyprus Pima Mining Company. The effectiveness of treated sewage effluent was compared with well water on the growth and survival of trees, legumes and grasses. The species studied were eucalyptus (Eucalyptus rostrata), native mesquite (Prosopis juliflora), palo verde (Cercidium floridum), desert tobacco (Nicotiana lauca) barley (Hordeum vulgare), perennial rye grass (Lolium perenne), alfalfa (Medicago sativa), and blue lupine (Lupinus augustifolius). Sprinkler and tree -well irrigation methods were used to apply the treated sewage effluent and well water to steep tailing slopes. The treated municipal sewage effluent was found to be a practical irrigation substitute for well water and a good source of plant nutrients such as nitrogen and phosphorous. Effluent produced better survival and growth than did well water with or without augmentation.
4

Increasing Forage Production on a Semiarid Rangeland Watershed

Tromble, J. M. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Two native grass species, blue grama and sidecoats, were successfully seeded on a semiarid rangeland on the walnut gulch experimental watershed in southeastern Arizona. Optimum seeding dates selected were those within the time period most likely to receive precipitation, and grass stands were established in two successive years with average rainfall. Shrubs were killed by root-plowing at a depth of 14 inches, a procedure which was more than 95% successful in controlling sprouting shrubs. Forage production measurements taken on nm-28 sideoats and Vaughn sideoats showed a yield of 1,950 and 2,643 pounds of forage per acre, respectively, for the 2 years following the seeding, whereas untreated sites produced 23 and 25 pounds per acre of forage. Results indicate that success in establishing a stand of native grass is increased through use of existing hydrologic data.
5

Hydrologic Aspects of Land-Use Planning at Tumamoc Hill, Tucson, Arizona

Popkin, Barney Paul 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Tumamoc Hill, an 869-acre (352 ha) desert area near Tucson, Arizona, is being considered as a controlled- access environmental site. Water affects the site's geology, soils, vegetation, wildlife, and archaeology. The Hill is drained by three small watersheds. The largest is rapidly urbanizing upstream. Hydrologic aspects include potential flooding and erosion hazards. These may be reduced simply, economically, and wisely in a land-use plan. Upstream development increases storm runoff volumes, and flood peaks, and frequencies routed through the site, and threatens existing downstream urban development. Return periods of channel-overflow floods become shorter with urbanization. The region may be managed to reduce hydrologic hazards by three procedures: widen channels, install low checkdams, and vegetate drainageways. These methods will slow down runoff velocities, and increase cross -sectional area of flow and roughness coefficient. More water would also be available for vegetation and wildlife. The land-use plan should include environmental education programs. These would present important effects of water on the natural ecology, and hydrologic aspects of watershed urbanization.

Page generated in 0.1449 seconds