Spelling suggestions: "subject:"egetation productivity"" "subject:"begetation productivity""
1 |
Divergent responses of vegetation cover in Southwestern US ecosystems to dry and wet years at different elevationsHerrmann, Stefanie M, Didan, Kamel, Barreto-Munoz, Armando, Crimmins, Michael A 01 December 2016 (has links)
In the semiarid Southwestern United States, prolonged drought conditions since the early 2000s have resulted in widespread declines of the vegetation productivity in this water-constrained ecosystem, as revealed by analyses of the Normalized Difference Vegetation Index (NDVI). However, the spatial pattern of the NDVI response to dry years is not uniform: a divergent response of NDVI to precipitation is observed between the low-lying desert and the high montane forests at elevations above 2,500 meter. Weanalyzed relationships between 15 years of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and gridded climate data (PRISM) along elevation gradients at scales from regional to local. Our elevation-explicit analysis captures the transition from water-limited to temperature-limited ecosystems, with a sign-reversal in the correlation coefficient between precipitation and NDVI observed at about 2,500-3,000m altitude. Wesuggest warmer temperatures and less snow cover associated with drier years as explanations for high elevation gains in vegetation productivity during dry years.
|
2 |
Relationships between tree rings and Landsat EVI in the Northeast United StatesFarina, Mary K. 12 March 2016 (has links)
Changes in the productivity of temperate forests have important implications for atmospheric carbon dioxide (CO2) concentrations, and many efforts have focused on methods to monitor both gross and net primary productivity in temperate forests. Remotely sensed vegetation indices provide spatially extensive measures of vegetation activity, and the Enhanced Vegetation Index (EVI) has been widely linked to photosynthetic activity of vegetation. Networks of tree ring width (TRW) chronologies provide ground-based estimates of annual net carbon (C) uptake in forests, and time series of EVI and TRW may capture common productivity signals. Robust correlations between mean TRW and EVI may enhance spatial extrapolations of TRW-based productivity estimates, ultimately improving understanding of spatio-temporal variability in forest productivity. The research presented in this thesis investigates potential empirical relationships between networks of TRW chronologies and time series of Landsat EVI and Landsat-based phenological metrics in the Northeast United States. We hypothesized that mean TRW is positively correlated with mean monthly EVI during the growing season, EVI integrated over the growing season, and growing season length. Results indicate that correlations between TRW and EVI are largely not significant in this region. The complex response of tree growth to a variety of limiting climatic factors in temperate forests may decouple measures of TRW growth and canopy reflectance. However, results also indicate that there may be important lag effects in which EVI affects mean TRW during the following year. These findings may improve understanding of links between C uptake and growth of tree stems over large spatial scales.
|
Page generated in 0.1404 seconds