• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical and Numerical Models for Velocity Profile in Vegetated Open-Channel Flows

Hussain, Awesar A. January 2020 (has links)
The presence of vegetation in open channel flow has a significant influence on flow resistance, turbulence structures and sediment transport. This study will evaluate flow resistance and scale velocity profile in depth limited flow conditions, specifically investigating the impact of vegetation on the flow resistance under submerged flow conditions. The resistance induced by vegetation in open channel flows has been interpreted differently in literature, largely due to different definitions of friction factors or drag coefficients and the different Reynolds numbers. The methods utilized in this study are based on analytical and numerical models to investigate the effects of vegetation presence on flow resistance in open channel flows. The performing strategy approach was applied by three-dimensional computational fluid dynamics (CFD) simulations, using artificial cylinders for the velocity profile. This is to estimate the average flow velocity and resistance coefficients for flexible vegetation, which results in more accurate flow rate predictions, particularly for the case of low Reynolds number. This thesis shows different formulas from previous studies under certain conditions for a length scale metric, which normalises velocity profiles of depth limited open channel flows with submerged vegetation, using both calculated and simulated model work. It considers the submerged vegetation case in shallow flows, when the flow depth remains no greater than twice the vegetation height. The proposed scaling has been compared and developed upon work that have been influenced by logarithmic and power laws to present velocity profiles, in order to illustrate the variety of flow and vegetation configurations.

Page generated in 0.1192 seconds