• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimación del mapa local para un vehículo autónomo

Herrmann Priesnitz, Daniel January 2015 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica / Ingeniero Civil Eléctrico / El objetivo de esta tesis es diseñar e implementar un sistema de modelamiento del entorno. Este debe recibir como entradas la morfología del terreno, imágenes segmentadas y el la pose del auto y generar en base a estas variables un modelo del entorno (\textit{Mapa Local)} que permita a otro módulo posterior la generación de trayectorias seguras para el vehículo. Este sistema corresponde al módulo \textit{Estimador Mapa Local} del proyecto \textit{Vehículo Autónomo} del AMTC. El diseño del sistema toma ideas de diversas fuentes, muchas de ellas de vehículos participantes del DARPA Grand Challenge 2005, ya que este desafío es muy similar al problema que se desea resolver. Se utilizan datos de segmentación visual y de sensores de rango, fusionando ambas fuentes de información para obtener un modelo del entorno, denominado \textit{Mapa Local}, más preciso y robusto que cualquiera de las dos entradas de manera independiente. Se comparan dos variantes de detecciones de obstáculos en base a las mediciones de sensores de rango. El primer método, denominado método de frecuencias, toma la información y calcula la energía en diferentes bandas de frecuencia e intenta estimar la navegabilidad del terreno en base a estos valores. El segundo método, de diferencias de altura, tiene un enfoque similar, sin embargo calcula la mayor diferencia de altura de un punto central con una vecindad de diferentes radios, luego se utilizan dichos valores de la misma manera que en el método anterior. En ambos casos se estudia el efecto de utilizar o no la información de la segmentación visual para complementar la caracterización. Tomando las características disponibles para cada método, se estima el costo de que el vehículo navegue por cada lugar del entorno, costos altos implican peligro, mientras que bajos indican zonas seguras para la navegación. Es justamente esta caracterización del entorno, en base a costos, la que se denomina \textit{Mapa Local}. Para probar las diferentes variantes del sistema se graban 4 diferentes bases de datos, correspondientes a mediciones realizadas por el vehículo mientras era conducido manualmente. Se diseñan medidas de desempeño para comparar el rendimiento de las variantes. Estas intentan reflejar la cantidad de eventos fatales (choques), eventos indeseados (paradas frente a detecciones falsas de obstáculos) y conducción normal, que el vehículo hubiera encontrado si fuese conducido por el sistema. Estas características se calculan para diferentes velocidades de conducción, por lo que para cada variante probada se tienen 4 curvas que caracterizan su desempeño. Al comparar los métodos propuestos se logra concluir que la información visual enriquece el \textit{Mapa Local} y logra un mejor desempeño, siempre y cuando se logre una fusión con bajos errores, en caso contrario esta información puede producir bajas de rendimiento. En cuanto a los métodos de detección de obstáculos, el método de diferencias de altura obtuvo una ligera ventaja en el desempeño, pero esta es muy poco significativa para seleccionar uno por sobre el otro.
2

Diseño de estrategia de evasión de obstáculos para modelo dinámico de vehículo autónomo desarrollado en ambiente Matlab(R)-Simulink

Acuña Arancibia, Alexis Daniel January 2012 (has links)
Ingeniero Civil Electricista / La presente Memoria de Título se centra en el diseño de una estrategia de control difuso, tipo Mamdani, para evasión de obstáculos presentes en ruta de un Vehículo terrestre Guiado Autónomamente (AGV, por sus siglas en inglés), y la consiguiente verificación del enfoque propuesto para el caso en que la operación del vehículo se simula a través de un modelo dinámico en ambiente MATLAB®- Simulink (el cuál a su vez emula un automóvil Volkswagen® modelo Tiguan, año 2010). Este trabajo se enmarca dentro de uno de los proyectos interdisciplinarios del área de Automatización y Robótica del Centro Avanzado de Tecnología para Minería, perteneciente a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, que busca el desarrollo de un AGV capaz de operar en ambientes similares a los encontrados en faenas a rajo abierto de la minería. Con este fin, se estudia en detalle las variables dinámicas que definen el comportamiento de un móvil en el plano a través de un modelo tipo bicicleta , al cual se integran características propias del automóvil que se desea simular: retardos, zonas muertas y limitadores de pendientes propios de los actuadores del AGV. La incorporación de los elementos mencionados al modelo creado permiten lograr resultados satisfactorios, generando rutas coherentes en su comportamiento y llegando a un error cuadrático medio entre la velocidad real del vehículo y la adquirida por el modelo en simulación no superior a un 4,6%. Para la implementación de la estrategia difusa de control de evasión de obstáculos se establece un controlador supervisor de ruta, que permite guiar al vehículo en caso de no detectarse un obstáculo. Dicho controlador es capaz de garantizar que el vehículo se mantenga en su carril; mostrando un error de seguimiento que no supera los 50 [cm] y caracterizado por una longitud de oscilación de aproximadamente 500 [m] en un periodo de 1 minuto, a una velocidad constante de 30 [Km/h]. Por otra parte, para efectos de la detección de un obstáculo en ruta de colisión, se implementa una estrategia que caracteriza el área frente del vehículo en tres zonas (central y laterales), para con ello determinar la ruta ideal a seguir, considerando al obstáculo como una función de probabilidad Gaussiana bivaluada, de medias y desviación estándar conocidas. Finalmente se presenta el diseño e implementación definitivos para el controlador propuesto, el cual es capaz de evadir obstáculos en ruta de colisión, manipulando el ángulo del volante y la velocidad del vehículo. Los resultados obtenidos al aplicar la lógica difusa de tipo Mamdani fueron satisfactorios, al permitir la evasión de obstáculos con una probabilidad mayor al 99,9%. Todo esto inmerso en un efectivo protocolo de seguridad que garantiza que el AGV no colisionará con un vehículo antecesor que frene intempestivamente o con obstáculos imposibles de evadir. Junto con lo anterior se minimiza la probabilidad de vuelco o derrape del vehículo a través de una disminución de la aceleración lateral gracias a una reducción planificada de su velocidad longitudinal.
3

Diseño y simulación de estrategias de control para seguimiento de trayectoria en un vehículo autónomo terrestre

Carricajo Martin, Tómas January 2013 (has links)
Ingeniero Civil Electrico / Este trabajo se enmarca dentro de un proyecto de automatización de vehículos terrestres del Centro Avanzado de Tecnología para la Minería perteneciente a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile. Este proyecto tiene por propósito construir un vehículo autónomo, capaz de operar en un ambiente similar al encontrado en mineras. El objetivo general de la presente Memoria de Título es el desarrollo de una estrategia de control para el seguimiento de trayectorias en un vehículo autónomo terrestre, todo lo anterior en ambiente de simulación Matlab Simulink. También es parte de este trabajo sentar las bases para la implementación de estas estrategias de control en un vehículo a escala real. Se tomará en cuenta, como referencia para el ajuste de las leyes de control, la utilización de un automóvil marca Volkswagen modelo Tiguan. El trabajo realizado se divide en tres etapas: investigación bibliográfica, análisis de opciones y diseño de leyes de control; implementación de controladores en simulador; y finalmente, sintonización, validación de estrategia y análisis resultados. En la primera etapa se presentan antecedentes y métodos encontrados en la literatura que suelen utilizarse para solucionar el problema de seguimiento de trayectoria. Luego, se escogen dos posibles métodos: el primero es un controlador diseñado a partir de la estrategia de control por modo deslizante (SMC por su sigla en inglés) y el segundo corresponde al utilizado anteriormente en un Volkswagen Touareg Stanley, desarrollado en la Universidad de Stanford). Durante esta etapa también se derivan las ecuaciones de la ley de control, de ambos métodos, para ser aplicadas al modelo del automóvil. La segunda etapa del trabajo consiste en implementar los controladores escogidos previamente. Los códigos son escritos en Matlab y se utiliza la plataforma Matlab Simulink para implementar el seguimiento de trayectoria. Además de los controladores, el sistema requiere de un planificador de trayectoria, el modelo del vehículo y controladores específicos de más bajo nivel; los últimos dos fueron implementados en Matlab Simulink en etapas anteriores del proyecto y se reproduce la salida del planificador para este trabajo. Por último, luego de tener una plataforma de simulación para ambas estrategias de control, se ejecutan variadas pruebas. En una primera instancia se realiza, a base de prueba y error, la sintonización de todos los parámetros de los controladores con el objetivo de minimizar el error cuadrático medio para una trayectoria predefinida. Luego, se procede a pruebas en distintos escenarios y para distintas trayectorias, las que incluyen cambios de velocidad y trayectorias con discontinuidades. Además se intenta cuantificar el comportamiento de los sistemas controlados a partir de la medición de características del error, tales como los tiempos de respuesta y estabilización. Finalmente, se escoge como el mejor controlador al propuesto por el grupo de Stanford y se sugiere para ser implementado en el Volkswagen Tiguan. Así mismo, se presenta un método para sintonizar el controlador en el automóvil sin necesidad de realizar prueba exhaustivas para todos los casos. Además, queda planteado como trabajo futuro la implementación del controlador en lenguaje C++ para ser incluido en el automóvil del AMTC.
4

Sistema de Control Difuso para Velocidad y Dirección en Vehículo de Escala Real

Cabello San Martín, Felipe Andrés January 2011 (has links)
Actualmente, los vehículos guiados de forma autónoma (AGV) son ampliamente utilizados en diversas aplicaciones industriales, razón por la cual el diseño e implementación de estrategias de control para estos sistemas es de vital importancia para responder a las exigencias de seguridad, productividad y eficiencia que se requieren en los ámbitos en los que se desempeñan estos vehículos. Aunque las variables de interés a supervisar en un AGV son variadas, destacan dos de ellas que es necesario controlar en todo vehículo autónomo: (i) la velocidad y (ii) la dirección. Diferentes estrategias de control se han explorado e implementado para llevar a cabo la supervisión de la velocidad y la dirección de un AGV, sobresaliendo entre ellas el control difuso. El objetivo general de este trabajo, enmarcado en el proyecto de Automatización de Vehículos y Maquinaria Minera Móvil del Centro Avanzado de Tecnología para la Minería (AMTC), es diseñar e implementar controladores difusos desacoplados para controlar la velocidad y dirección de un vehículo de escala real, en particular un Volkswagen® Tiguan. En el caso del controlador de velocidad, el diseño considera dos variables de entrada, el error de velocidad y la integral del error de velocidad, y una única salida que manipula la apertura de los pedales de aceleración y freno. El signo de la salida determina cual actuador es el que se activa frente a determinadas condiciones de velocidad. El diseño de los conjuntos difusos y la base de reglas del controlador apuntan a minimizar el uso del freno, evitar la alternancia entre el uso de los pedales, permitir controlar adecuadamente la velocidad del vehículo en un amplio rango de velocidades. Por otra parte, el diseño del controlador difuso de la dirección establece como variables de entrada el error del ángulo de las ruedas y la variación de dicho ángulo, y como variable de salida la variación del ángulo del volante. Los conjuntos difusos y la base de reglas de este controlador fueron diseñados con el fin de emular y mejorar el tiempo de respuesta de un conductor humano. Ambos controladores se validaron y evaluaron a nivel de simulación en un ambiente Matlab®- Simulink, obteniéndose resultados satisfactorios en todos los casos estudiados que involucraron pruebas con referencias de velocidad y ángulo de la ruedas basadas en escalones y rampas a fin de emular distintos tipos de conducción. De igual forma, los controladores difusos se mostraron robustos frente a perturbaciones, en particular aquellas asociadas a ruido en las referencias o en la retroalimentación. Se concluye de los resultados obtenidos en este trabajo que el control difuso constituye una estrategia de control efectiva para supervisar adecuadamente la velocidad y la dirección de un AGV, obteniéndose controladores robustos y capaces de cumplir adecuadamente con los requerimientos de tiempo de estabilización y sobrenivel máximo impuestos, a nivel de simulación. De igual forma, debido a la flexibilidad de la herramienta de control utilizada, se puede establecer que en una aplicación para un ambiente no simulado es posible obtener resultados similares a los conseguidos en este trabajo, realizando las modificaciones necesarias a los controladores diseñados, según las condiciones de operación del sistema de escala real.

Page generated in 0.0535 seconds