• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

APROVE: A Stable and Robust VANET Clustering Scheme using Affinity Propagation

Shea, Christine 15 February 2010 (has links)
The need for an effective clustering algorithm for Vehicle Ad Hoc Networks (VANETs) is motivated by the recent research in cluster-based MAC and routing schemes. VANETs are highly dynamic and have harsh channel conditions, thus a suitable clustering algorithm must be robust to channel error and must consider node mobility during cluster formation. This work presents a novel, mobility-based clustering scheme for Vehicle Ad hoc Networks, which forms clusters using the Affinity Propagation algorithm in a distributed manner. This proposed algorithm considers node mobility during cluster formation and produces clusters with high stability. Cluster performance was measured in terms of average cluster head duration, average cluster member duration, average rate of cluster head change, and average number of clusters. The proposed algorithm is also robust to channel error and exhibits reasonable overhead. Simulation results confirm the superior performance, when compared to other mobility-based clustering techniques.
2

APROVE: A Stable and Robust VANET Clustering Scheme using Affinity Propagation

Shea, Christine 15 February 2010 (has links)
The need for an effective clustering algorithm for Vehicle Ad Hoc Networks (VANETs) is motivated by the recent research in cluster-based MAC and routing schemes. VANETs are highly dynamic and have harsh channel conditions, thus a suitable clustering algorithm must be robust to channel error and must consider node mobility during cluster formation. This work presents a novel, mobility-based clustering scheme for Vehicle Ad hoc Networks, which forms clusters using the Affinity Propagation algorithm in a distributed manner. This proposed algorithm considers node mobility during cluster formation and produces clusters with high stability. Cluster performance was measured in terms of average cluster head duration, average cluster member duration, average rate of cluster head change, and average number of clusters. The proposed algorithm is also robust to channel error and exhibits reasonable overhead. Simulation results confirm the superior performance, when compared to other mobility-based clustering techniques.
3

Simulated annealing for Vehicular Ad-hoc Networks

VENUMBAKKA, ETHISH January 2023 (has links)
In this thesis, we tackle a significant optimization challenge within Vehicular Ad Hoc Networks (VANETs) by employing a simulated annealing approach. We focus on developing an efficient Vehicle Routing Problem (VRP) algorithm to sift through numerous potential solutions and identify the best one. Our VANET scenario revolves around four distinct vehicles traversing four unique routes. The primary objective is to minimize the total distance covered by these vehicles while ensuring that they visit all designated waypoints. We implement this problem using MATLAB to establish initial routes for each simulation uniquely. Simulated annealing proves to be a valuable tool in optimizing VANETs. The gradual cooling process reduces the likelihood of accepting suboptimal solutions over time, allowing the algorithm to escape local optima and converge towards nearly optimal solutions. Regarding routing protocol parameter configuration, simulated annealing is the technique of choice for identifying the most influential parameters. It evaluates the cost and creates new routes based on neighboring nodes, calculating the cost function for these new routes. Starting from an initial configuration, the algorithm iteratively refines it by introducing random changes, retaining only those that enhance the objective function. Our objective function defines the Quality of Service (QoS) and communication efficiency of the routing protocol. The gradual reduction in the acceptance of less favorable configurations over time is called the annealing schedule, enabling the algorithm to escape local optima and approach nearly optimal designs.
4

Uso de comunicação V2V para o descarregamento de dados em redes celulares: uma estratégia baseada em clusterização geográca para apoiar o sensoriamento veicular colaborativo / On the use of V2V communication for cellular data offloading: a geographic clustering-based strategy to support vehicular crowdsensing

Nunes, Douglas Fabiano de Sousa 20 December 2018 (has links)
A incorporação das tecnologias de computação e de comunicação nos veículos modernos está viabilizando uma nova geração de automóveis conectados. Com a capacidade de se organizarem em rede, nas chamadas redes veiculares ad hoc (VANETs), eles poderão, num futuro próximo, (i) tornar o trânsito mais seguro para os motoristas, passageiros e pedestres e/ou (ii) promover uma experiência de transporte mais agradável, com maior conforto. É neste contexto que se destaca o Sensoriamento Veicular Colaborativo (VCS), um paradigma emergente e promissor que explora as tecnologias já embarcados nos próprios veículos para a obtenção de dados in loco. O VCS tem demonstrado ser um modelo auspicioso para o desenvolvimento e implantação dos Sistemas Inteligentes de Transporte (ITSs). Ocorre, todavia, que, em grandes centros urbanos, dependendo do fenômeno a ser monitorado, as aplicações de VCS podem gerar um tráfego de dados colossal entre os veículos e o centro de monitoramento. Considerando que as informações dos automóveis são geralmente enviadas para um servidor remoto usando as infraestruturas das redes móveis, o número massivo de transmissões geradas durante as atividades de sensoriamento pode sobrecarregá-las e degradar consideravelmente a Qualidade de Serviço (QoS) que elas oferecem. Este documento de tese descreve e analisa uma abordagem de clusterização geográfica que se apoia no uso de comunicações Veículo-para-Veículo (V2V) para promover o descarregamento de dados do VCS em redes celulares, de forma a minimizar os impactos supracitados. Os resultados experimentais obtidos mostraram que o uso das comunicações V2V como método complementar de aquisição de dados in loco foi capaz de diminuir consideravelmente a quantidade transmissões realizadas sobre as redes móveis, sem a necessidade de implantação de novas infraestruturas de comunicação no ambiente, e com um reduzido atraso médio adicional fim a fim na obtenção das informações. A abordagem desenvolvida também se apresenta como uma plataforma de software flexível sobre a qual podem ser incorporadas técnicas de agregação de dados, o que possibilitaria aumentar ainda mais a preservação dos recursos de uplink das redes celulares. Considerando que a era da Internet das Coisas (IoT) e das cidades inteligentes está apenas começando, soluções para o descarregamento de dados, tal como a tratada nesta pesquisa, são consideradas imprescindíveis para continuar mantendo a rede móvel de acesso à Internet operacional e capaz de suportar uma demanda de comunicação cada vez maior por parte das aplicações. / The incorporation of computing and communication technologies into modern vehicles is enabling a new generation of connected cars. With the ability to get into a network formation, in the so-called ad hoc networks (VANETs), these vehicles might, in the near future, (i) make the traffic safer for drivers, passengers and pedestrians and/or (ii) promote a more pleasant transportation experience, with greater comfort. It is in this context that emerges the Vehicle CrowdSensing (VCS), a novel and promising paradigm for performing in loco data collection from the vehicles embedded technologies. VCS has proved to be an auspicious scheme for the development and deployment of the Intelligent Transport Systems (ITSs). However, in large urban areas, depending on the phenomenon to be monitored, the VCS applications can generate a colossal data traffic between vehicles and the monitoring center. Considering that all the vehicles information is generally sent to the remote server by using mobile network infrastructures, this massive amount of transmissions generated during the sensing activities can overload them and degrade the Quality of Service (QoS) they offer. This thesis document describes and analyzes a geographic clustering approach that relies on the use of Vehicle-to- Vehicle (V2V) communications to promote the VCS data offloading in cellular networks, in order to minimize the above impacts. The experimental results obtained showed that the use of V2V communications as a complementary data acquisition method was able to considerably reduce the number of transmissions carried out on mobile networks, without the need for deploying new communication infrastructures in the environment, and with a reduced additional delay. The created approach also stands itself as a flexible software platform on which data aggregation techniques can be incorporated, in order to maximize the network resources preservation already provided by the proposal. Considering that we are just entering in the Internet of Things (IoT) and smart cities era, creating data offloading solutions, such as that treated in this research, is considered an essential task to keep the Internet access network operational and able to support the growing demand for mobile communications.
5

Securing data dissemination in vehicular ad hoc networks

Aldabbas, Hamza January 2012 (has links)
Vehicular ad hoc networks (VANETs) are a subclass of mobile ad hoc networks (MANETs) in which the mobile nodes are vehicles; these vehicles are autonomous systems connected by wireless communication on a peer-to-peer basis. They are self-organized, self-configured and self-controlled infrastructure-less networks. This kind of network has the advantage of being able to be set-up and deployed anywhere and anytime because it has no infrastructure set-up and no central administration. Distributing information between these vehicles over long ranges in such networks, however, is a very challenging task, since sharing information always has a risk attached to it especially when the information is confidential. The disclosure of such information to anyone else other than the intended parties could be extremely damaging, particularly in military applications where controlling the dissemination of messages is essential. This thesis therefore provides a review of the issue of security in VANET and MANET; it also surveys existing solutions for dissemination control. It highlights a particular area not adequately addressed until now: controlling information flow in VANETs. This thesis contributes a policy-based framework to control the dissemination of messages communicated between nodes in order to ensure that message remains confidential not only during transmission, but also after it has been communicated to another peer, and to keep the message contents private to an originator-defined subset of nodes in the VANET. This thesis presents a novel framework to control data dissemination in vehicle ad hoc networks in which policies are attached to messages as they are sent between peers. This is done by automatically attaching policies along with messages to specify how the information can be used by the receiver, so as to prevent disclosure of the messages other than consistent with the requirements of the originator. These requirements are represented as a set of policy rules that explicitly instructs recipients how the information contained in messages can be disseminated to other nodes in order to avoid unintended disclosure. This thesis describes the data dissemination policy language used in this work; and further describes the policy rules in order to be a suitable and understandable language for the framework to ensure the confidentiality requirement of the originator. This thesis also contributes a policy conflict resolution that allows the originator to be asked for up-to-date policies and preferences. The framework was evaluated using the Network Simulator (NS-2) to provide and check whether the privacy and confidentiality of the originators’ messages were met. A policy-based agent protocol and a new packet structure were implemented in this work to manage and enforce the policies attached to packets at every node in the VANET. Some case studies are presented in this thesis to show how data dissemination can be controlled based on the policy of the originator. The results of these case studies show the feasibility of our research to control the data dissemination between nodes in VANETs. NS-2 is also used to test the performance of the proposed policy-based agent protocol and demonstrate its effectiveness using various network performance metrics (average delay and overhead).

Page generated in 0.0714 seconds