• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of the household vehicle fleet : anticipating fleet compostion, plug-in hybrid electric vehicle (PHEV) adoption and greenhouse gas (GHG) emissions in Austin, Texas

Musti, Sashank 20 September 2010 (has links)
In today’s world of volatile fuel prices and climate concerns, there is little study on the relation between vehicle ownership patterns and attitudes toward potential policies and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s household-fleet evolution. Results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are vehicle purchase price, type/class, and fuel economy (with 30%, 21% and 19% of respondents placing these in their top three). Most (56%) respondents also indicated that they would seriously consider purchasing a Plug-In Hybrid Electric Vehicle (PHEV) if it were to cost $6,000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings. 25-year simulations suggest that 19% of Austin’s vehicle fleet could be comprised of Hybrid Electric Vehicles (HEVs) and PHEVs under adoption of a feebate policy (along with PHEV availability in Year 1 of the simulation, and current gas prices throughout). Under all scenarios vehicle usage levels (in total vehicle miles traveled [VMT]) are predicted to increase overall, along with average vehicle ownership levels (per household, and per capita); and a feebate policy is predicted to raise total regional VMT slightly (just 4.43 percent, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 3.8 percent, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 17% and CO2 emissions by 22% (relative to trend). Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. And HEVs, PHEVs and Smart Cars are estimated to represent a major share of the fleet’s VMT (25%) by year 25 under the feebate scenario. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet), yet feebate-policy receipts exceed rebates in each simulation year. A 15% reduction in the usage levels of SUVs, CUVs and minivans is observed in the $5/gallon scenario (relative to trend). Mean use levels per vehicle of HEVs and PHEVs are simulated to have a variation of 753 and 495 across scenarios. In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have even more significant effects on energy dependence and greenhouse gas emissions. / text

Page generated in 0.0466 seconds