• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Analysis of Naturalistic Driver Data in Evaluating Vehicle Longitudinal Control Systems

Lin, Kevin Christopher 23 October 2017 (has links)
No description available.
2

Conception des principes de coopération conducteur-véhicule pour les systèmes de conduite automatisée / Designing driver-vehicle cooperation principles for automated driving systems

Guo, Chunshi 29 May 2017 (has links)
Face à l’évolution rapide des technologies nécessaires à l’automatisation de la conduite au cours de ces dernières années, les grands constructeurs automobiles promettent la commercialisation de véhicules autonomes à l’horizon 2020. Cependant, la définition des interactions entre les systèmes de conduite automatisée et le conducteur au cours de la tâche de conduite reste une question ouverte. L'objectif de cette thèse est de concevoir, développer et évaluer des principes de coopération entre le conducteur et les systèmes de conduite automatisée. Compte tenu de la complexité d'un tel Système Homme-Machine, la thèse propose, en premier lieu une architecture de contrôle coopératif hiérarchique et deux principes de coopération généraux sur deux niveaux dans l’architecture qui serviront ensuite de base commune pour la conception des systèmes coopératifs développés pour les cas d’usages définis. Afin d’assurer une coopération efficace avec le conducteur dans un environnement de conduite dynamique, le véhicule autonome a besoin de comprendre la situation et de partager sa compréhension de la situation avec le conducteur. Pour cela, cette thèse propose un formalisme de représentation de la scène de conduite basé sur le repère de Frenet. Ensuite, une méthode de prédiction de trajectoire est également proposée. Sur la base de la détection de manœuvre et de l'estimation du jerk, cette méthode permet d’améliorer la précision de la trajectoire prédite comparée à celle déterminée par la méthode basée sur une hypothèse d'accélération constante. Dans la partie d’études de cas, deux principes de coopération sont mis en œuvre dans deux cas d’usage. Dans le premier cas de la gestion d’insertion sur autoroute, un système de contrôle longitudinal coopératif est conçu. Il comporte une fonction de planification de manœuvre et de génération de trajectoire basée sur la commande prédictive. En fonction du principe de coopération, ce système peut à la fois gérer automatiquement l’insertion d’un véhicule et donner la possibilité au conducteur de changer la décision du système. Dans le second cas d'usage qui concerne le contrôle de trajectoire et le changement de voie sur autoroute, le problème de partage du contrôle est formulé comme un problème d’optimisation sous contraintes qui est résolu en ligne en utilisant l’approche de la commande prédictive (MPC). Cette approche assure le transfert continu de l’autorité du contrôle entre le système et le conducteur en adaptant les pondérations dans la fonction de coût et en mettant en œuvre des contraintes dynamiques en ligne dans le modèle prédictif, tout en informant le conducteur des dangers potentiels grâce au retour haptique sur le volant. Les deux systèmes sont évalués à l’aide de tests utilisateur sur simulateur de conduite. En fonction des résultats des tests, cette thèse discute la question des facteurs humains et la perception de l'utilisateur sur les principes de coopération. / Given rapid advancement of automated driving (AD) technologies in recent years, major car makers promise the commercialization of AD vehicles within one decade from now. However, how the automation should interact with human drivers remains an open question. The objective of this thesis is to design, develop and evaluate interaction principles for AD systems that can cooperate with a human driver. Considering the complexity of such a human-machine system, this thesis begins with proposing two general cooperation principles and a hierarchical cooperative control architecture to lay a common basis for interaction and system design in the defined use cases. Since the proposed principles address a dynamic driving environment involving manually driven vehicles, the AD vehicle needs to understand it and to share its situational awareness with the driver for efficient cooperation. This thesis first proposes a representation formalism of the driving scene in the Frenet frame to facilitate the creation of the spatial awareness of the AD system. An adaptive vehicle longitudinal trajectory prediction method is also presented. Based on maneuver detection and jerk estimation, this method yields better prediction accuracy than the method based on constant acceleration assumption. As case studies, this thesis implements two cooperation principles for two use cases respectively. In the first use case of highway merging management, this thesis proposes a cooperative longitudinal control framework featuring an ad-hoc maneuver planning function and a model predictive control (MPC) based trajectory generation for transient maneuvers. This framework can automatically handle a merging vehicle, and at the mean time it offers the driver a possibility to change the intention of the system. In another use case concerning highway lane positioning and lane changing, a shared steering control problem is formulated in MPC framework. By adapting the weight on the stage cost and implementing dynamic constraints online, the MPC ensures seamless control transfer between the system and the driver while conveying potential hazards through haptic feedback. Both of the designed systems are evaluated through user tests on driving simulator. Finally, human factors issue and user’s perception on these new interaction paradigms are discussed.

Page generated in 0.0715 seconds