Spelling suggestions: "subject:"ehicles"" "subject:"ofvehicles""
231 |
The transition to low speed vehicles for intra-city travelLarsen, Katherine Anne 12 February 2013 (has links)
A transition to low speed vehicles (LSVs), a federally-designated class of vehicles smaller, lighter and slower (limited to maximum speeds between 20 and 25 mph) than conventional automobiles, for intra-city travel offers several advantages. Their smaller size provides roadway space for other modes such as cycling and reduces the amount of land dedicated to vehicles. Their lower maximum speeds are more compatible with operation in populated areas where cars traveling at 30 mph prove deadly for pedestrians and people biking, and their energy usage and emissions are less than conventional automobiles.
Communities such as Lincoln, CA, Peachtree City, GA, and those in the South Bay Cities and Western Riverside Councils of Governments in California recognize the benefits of using LSVs and actively provide infrastructure and programs to support their use.
Considering the advantages of LSVs, this dissertation demonstrates potential ways to transition to LSVs and seeks to answer a question considered key to their adoption as the means of motorized travel in the city: Could LSVs also offer a travel time advantage?
The basis for this seemingly paradoxical question is the observation that because of their smaller size, lower weight, and slower speed, more space- and operationally-efficient intersections, such as LSV-scaled roundabouts, overpasses and interchanges, are possible within the existing right-of-way to replace signalized intersections. The hypothesis that LSVs can offer comparable or better travel time compared to conventional automobiles assumes the removal of intersection delay will allow LSVs to make-up for their slower speeds.
The methodology to test the hypothesis uses dynamic traffic assignment to compare average system, corridor and origin to destination travel times for conventional automobiles and LSVs in a subnetwork of Austin, Texas during transition periods when both vehicles are permitted and when only LSVs may be used for intra-city motorized travel. The findings indicate LSVs can offer similar and in some cases better average travel times than those for conventional automobiles, especially for the LSV-only network. However, careful planning is required during the transition stages when both vehicle types are in operation to maintain acceptable travel times for both conventional automobiles and LSVs. / text
|
232 |
Development of an analytical guidance algorithm for lunar descentChomel, Christina T. (Christina Tvrdik), 1973- 28 August 2008 (has links)
In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly" or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.
|
233 |
Analysis and synthesis of flight control systems for large launch vehiclesEarhart, Leroy Keith, 1942- January 1968 (has links)
No description available.
|
234 |
State inspection of automobiles to monitor the performance of exhaust gas emission control systemsCollins, Frank Alton 05 1900 (has links)
No description available.
|
235 |
A determination of motor vehicle activity factors for Atlanta, Georgia through fuel consumption analysisHayes, Adam Jason Otto 12 1900 (has links)
No description available.
|
236 |
Challenges and methodology in the design of a vertical lift aerial vehicle for use on the planet MarsO'Brien, Patrick Charles 05 1900 (has links)
No description available.
|
237 |
A theoretical treatment of technical risk in modern propulsion system designRoth, Bryce Alexander 05 1900 (has links)
No description available.
|
238 |
Predicting emissions rates for the Atlanta on-road light-duty vehicular fleet as a function of operating modes, control technologies, and engine charateristicsFomunung, Ignatius Wobyeba 05 1900 (has links)
No description available.
|
239 |
Modelling and control of unmanned ground vehicles.Tran, Thanh Hung January 2007 (has links)
University of Technology, Sydney. Faculty of Engineering. / The thesis focuses on issues of vehicle modelling incorporating wheel-terrain interaction and low-level control design taking into account uncertainties and input time delay. Addressing these issues is of significant importance in achieving persistent autonomy for outdoor UGVs, especially when navigating on unprepared terrains. The test-bed vehicle used for this research is retrofitted from an all-terrain 20-hp, 0.5-tonne vehicle. Its driveline system consists of an internal combustion engine, continuous variable transmission (CVT), gearbox, differential, chains, and eight wheels. The vehicle is driven in the skid-steering mode, which is popular for many off-road land-vehicle platforms. In this thesis, a comprehensive approach is proposed for modelling the driveline. The approach considers the difference in speed between two outputs of the differential and the turning mechanism of the vehicle. It describes dynamics of all components in the vehicle driveline in an integrated manner with the vehicle motion. Given a pattern of the throttle position, left and right braking efforts as the inputs, the dynamic behaviour of the wheels and other components of the UGV can be predicted. For controlling the vehicle at the low level, PID controllers are firstly used for all actuators. As many components of the vehicle exhibit nonlinearities and time delay, the large overshoots encountered in the outputs can lead to undesirable vehicle behaviours. To alleviate the problem, a novel control approach is proposed for suppression of overshoots resulting from PID control. Sliding mode control (SMC) is employed, for this, with time delay compensated by using an output predictor. As a result, the proposed approach can improve significantly system robustness and reduce substantially step response overshoot. Notably, the design is generic in that it can be applied for many dynamic processes. Knowledge of the interaction between the UGV and the terrain plays an important role in increasing its autonomy and securing the safety for off-road locomotion. In this regard, vehicle kinematic equations are combined with the theory of terramechanics for dynamic modelling of the interaction between the vehicle wheels and a variety of terrain types. Also, a fast algorithm is developed to enable online implementation. The novel interaction model takes into account the relationship between normal stresses, shear stresses, and shear displacement of the terrain that is in contact with the wheels in deriving the three-dimensional reaction forces. Finally, all modelling and control algorithms are integrated into a unique simulator for emulating the vehicle mobility characteristics. In particular, the wheel’s slip and rolling resistance can also be derived to provide useful information for closed-loop control when the UGV is navigating in an unknown environment. The simulator, as a tool for analysing the vehicle mobility, is helpful for further research on relevant topics such as traction control, safe and effective locomotion.
|
240 |
Commercial launch vehicle design and predictive guidance development / Matthew R. Tetlow.Tetlow, Matthew R. (Matthew Robert) January 2003 (has links)
Bibliography: leaves 220-229. / xxiv, 229 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigates alternative reusable launch vehicle design concepts and develops a robust guidance strategy for use on the ascent and flyback phases of flight. The first concept vehicle uses air breathing engines to perform a powered return flight to the launch site; the second employs only aerodynamic forces to achieve flyback, returning unpowered. Software simulation shows that a powered return flight delivers more payload than an unpowered return flight. The guidance strategy developed is a numerical guidance system robust enough for use in real time and works by integrating the current state, along the trajectory, to the final state of the vehicle. It then compares the achieved final state to the required target state and calculates the target condition error. A parameterised non-linear optimisation technique is then used to determine the new values of the optimisation parameters required to steer the vehicle from its current position and velocity to the desired position and velocity. / Thesis (Ph.D.)--University of Adelaide, School of Mechanical Engineering, 2003
|
Page generated in 0.0439 seconds