Spelling suggestions: "subject:"ehicles - springs anda suspension"" "subject:"ehicles - springs ando suspension""
1 |
Time-domain optimal control for vehicle suspensionsBrezas, Panagiotis Panos January 2013 (has links)
No description available.
|
2 |
Optimisation of a three spring and damper suspensionBerman, Robert January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University
of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of
Master of Science in Engineering.
Johannesburg 2016 / This investigation considers the influence of a three spring and damper suspension system
(SDS) on overall vehicle performance. Three SDS systems are used in high performance
winged racing cars to manage the effects of the aerodynamic forces. The aim of the investigation
was to quantify and compare the performance of a three SDS system to that
of a conventional two SDS system. The investigation was carried out on the Bailey Cars
LMP2 race car. Physical track testing was conducted on Zwartkops Raceway to measure
the vehicle’s performance, with further testing conducted on the vehicle’s tyres. A software
model of the vehicle and tyres was then created in ADAMS/Car, with models for the conventional
two SDS system, as well as the three SDS system. The ADAMS/Car model was
then validated against the test data. A Design of Experiments approach was used to investigate
the influence of the parameters in both the suspension models. The optimal set of
suspension parameters, that maximised vehicle performance on Zwartkops Raceway, was
then identified. The performance of the optimal suspension systems was then compared to
quantify the effect of the three SDS system. It was found that the optimised three SDS system
travelled 4.38 m less than the optimal two SDS in a 60 second simulation on Zwartkops
Raceway. However, the three SDS was effectively able to isolate the pitch and roll stiffness
of the vehicle. The optimal three SDS had a greater pitch stiffness and less roll stiffness than
the two SDS. This is significant for winged vehicles where aerodynamic forces are highly
sensitive to vehicle pitch, such as the Bailey Cars LMP2 race car, allowing for a soft wheel
rate without sacrificing the pitch stiffness of the vehicle. / MT2017
|
3 |
Enhancing vehicle dynamics through real-time tyre temperature analysisStroud, Trevor January 2013 (has links)
Vehicle suspension optimisation is a complex and difficult task, as there are a variety of factors influencing the dynamic performance of a vehicle. During suspension development, the optimisation of a selected few of these factors is often to the detriment of others, as they are all inter-related. In addition, expertise in vehicle setup and suspension tuning is scarce, and is limited to experienced racing teams and large automotive manufacturers with extensive research and development capabilities. The motivation for this research was therefore to provide objective and user-friendly methodologies for vehicle suspension optimisation, in order to support student projects like Formula Student, while having relevance to the needs of the South African automotive industry and racing community. With the onset of digital data acquisition, it has become feasible to take real-time measurements of tyre temperatures, to provide information on how a tyre is performing at a specific point on the track. Measuring the tyre surface temperature can provide a useful indication on whether the tyre is loaded equally or not, and what suspension adjustments should be made to improve tyre load distribution.
|
4 |
Método de medição de alinhamento de suspensão veicular não intrusivo baseado em visão computacional / Not intrusive method for the measurement of alignment angles of vehicular suspension based on computer visionMingoto Junior, Carlos Roberto 21 August 2018 (has links)
Orientador: Paulo Roberto Gardel Kurka / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-21T02:23:47Z (GMT). No. of bitstreams: 1
MingotoJunior_CarlosRoberto_D.pdf: 4676498 bytes, checksum: f396cb633ba04f6ff1589cea747bb133 (MD5)
Previous issue date: 2012 / Resumo: O presente projeto de pesquisa aplica técnicas de visão estereoscópica computacional no desenvolvimento da configuração de um equipamento de medição de ângulos de alinhamento de suspensão veicular, usando câmeras de vídeo de baixo custo. Atualmente, a maioria dos dispositivos de medição de ângulos de alinhamento de suspensão de veículos baseia-se no uso de componentes eletromecânicos, como pêndulos resistivos, inclinômetros capacitivos, dispositivos opto-mecânicos (espelhos e raio de luz monocromática de baixa intensidade). Com a sequência aqui estabelecida dos fundamentos algébricos e técnicas de visão computacional, realizam-se estudos de viabilidade científica e proposta de construção de um equipamento de verificação de ângulos de alinhamento veicular. São apresentados testes virtuais e reais, ilustrativos da potencialidade operacional do equipamento / Abstract: This research project uses stereoscopic computer vision techniques to develop a system to measure alignment angles of vehicular suspensions, using low cost cameras. Currently, most of the devices intended to measure vehicular suspension angles are based on the use of electromechanical components, such as resistive pendulums, capacitive inclinometers or opticmechanical devices (mirrors and projection of beams of monochromatic light of low intensity). Fundaments of linear algebra and computer vision techniques, lead to studies of feasibility and practical implementation of a system used to measure vehicular suspension alignment angles. Virtual and real measurements are carried out to illustrate the operative potential of such a system / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
|
Page generated in 0.0896 seconds