• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Four-Dimensional Passive Velocity Tomography of a Longwall Panel

Luxbacher, Kramer Davis 13 January 2006 (has links)
Velocity tomography is a noninvasive technology that can be used to determine rock mass response to ore removal. Velocity tomography is accomplished by propagating seismic waves through a rock mass to measure velocity distribution of the rock mass. Tomograms are created by mapping this velocity distribution. From the velocity distribution relative stress in the rock mass can be inferred, and this velocity distribution can be mapped at specific time intervals. Velocity tomography is an appropriate technology for the study of rockbursts. Rockbursts are events that occur in underground mines as a result of excessive strain energy being stored in a rock mass and sometimes culminating in violent failure of the rock. Rockbursts often involve inundation of broken rock into open areas of the mine. They pose a considerable risk to miners and can hinder production substantially. The rock mass under investigation in this research is the strata surrounding an underground coal mine in the western United States, utilizing longwall mining. The mine has experienced rockbursts. Seismic data were collected over a nineteen day period, from July 20th, 1997 to August 7th, 1997, although only eighteen days were recorded. Instrumentation consistsed of sixteen receivers, mounted on the surface, approximately 1,200 feet above the longwall panel of interest. The system recorded and located microseismic events, and utilized them as seismic sources. The data were analyzed and input into a commercial program that uses an algorithm known as simultaneous iterative reconstruction technique to generate tomograms. Eighteen tomograms were generated, one for each day of the study. The tomograms consistently display a high velocity area along the longwall tailgate that redistributes with face advance. Numerical modeling and mine experience confirm that the longwall tailgate is subject to high stress. Additionally, microseismic events are correlated with the velocity tomograms. Velocity tomography proves to be an effective method for the study of stress redistribution and rockburst phenomena at underground longwall coal mines, because it generates images that are consistent with prior information about the stress state at the mine and with numerical models of the stress in the mine. / Master of Science
2

Stress Redistribution in Berea Sandstone Samples Using Acoustic Emission Tomography in the Laboratory

Stevens, Dennis Frederick 21 May 2007 (has links)
Velocity tomography is a noninvasive technique that can image the interior of a rock structure. To apply tomography to rock specimens, a propagation wave, which acts as a probe, is used. The propagation wave propagates from a source until it reaches a sensor on the surface of the rock specimen. Tomograms can then be generated from the velocity distribution within the rock structure. Areas of higher velocity are typically representative of higher stress concentrations, whereas areas of low velocity can be areas of fracturing. The variation of velocity tomography described in this thesis uses acoustic emissions as sources for the propagation wave. Acoustic emission sources provide advantages over mechanical sources, since the acoustic emission source is generated by the rock as a result of deformation and fracturing. Velocity tomography of rock structures in the field has numerous applications and advantages. Velocity tomography can be used to monitor rock structures surrounding tunnels and underground openings such as mines. To monitor the rock structure, velocity tomography is used to determine areas of higher stress concentration that may be precursors to rock failure. However, velocity tomography must first be used in a laboratory environment to determine failure in rock samples before being applied to the field. The research presented includes the unconfined compression strength testing of 19 Berea sandstone samples. These samples were loaded to failure and during the experiment the acoustic emission events within the samples were monitored using a commercial acquisition system manufactured by Engineering Seismology Group (ESG) Canada. Source location software, also produced by ESG, was used for the location of the acoustic emission events. Ray inversions were performed on the data from the experiments to generate tomograms. The tomograms generated display the p-wave velocity distribution imaged within the Berea sandstone samples with the ultimate goal of being able to predict rock failure. Based on the experiments discussed in this thesis it can be inferred that velocity tomography is a useful tool for imaging the inside of the Berea sandstone samples. Precursors of rock failure could not be determined in this early stage of research. However, the tomograms do image the p-wave velocity distribution and do show a gradual progression of the p-wave velocity from the initial velocity model to higher velocities. Results of these 19 experiments do provide reasonable confidence in the method and warrant pursuit of further research to refine and improve this method of monitoring velocity tomography. / Master of Science
3

Seismic structure of the Arava Fault, Dead Sea Transform

Maercklin, Nils January 2004 (has links)
Ein transversales Störungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von Süden nach Norden vom Extensionsgebiet im Roten Meer über das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Miozän vor etwa 17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig über der Arava Störung (Arava Fault, AF), die hier den Hauptast der DST bildet.<br /> <br /> Eine Reihe seismischer Experimente, aufgebaut aus künstlichen Quellen, linearen Profilen über die Störung und entsprechend entworfenen Empfänger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3-4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P-zu-S Geschwindigkeitsverhältnis und es gibt Anzeichen für Änderungen über die Störung hinweg. Hoch aufgelöste tomographische Geschwindigkeitsmodelle bestätigen der Verlauf der AF und stimmen gut mit der Oberflächengeologie überein. <br /> <br /> Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitfähige Schicht westlich der AF, schlecht leitendes Material östlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerstände erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite lässt sich durch eine geschichtete Struktur beschreiben, wogegen die östliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der östlichen scheint gegenüber der Oberflächenausprägung der AF nach Osten verschoben zu sein.<br /> <br /> Eine Modellierung von seismischen Reflexionen an einer Störung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfläche auf der Längenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen begünstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) für seismische Streukörper basiert auf Array Beamforming und der Kohärenzanalyse P-zu-P gestreuter seismischer Phasen. Eine sorgfältige Bestimmung der Auflösung sichert zuverlässige Abbildungsergebnisse.<br /> <br /> Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sedimentären Füllung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen präkambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegenüber der an der Oberfläche sichtbaren AF um 1 km nach Osten verschoben und lässt sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Blöcken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gestützt. Die Grenze ist möglicherweise ein Ast der AF, der versetzt gegenüber des heutigen, aktiven Asts verläuft. Der Gesamtversatz der DST könnte räumlich und zeitlich auf diese beiden Äste und möglicherweise auch auf andere Störungen in dem Gebiet verteilt sein. / The Dead Sea Transform (DST) is a prominent shear zone in the Middle East. It separates the Arabian plate from the Sinai microplate and stretches from the Red Sea rift in the south via the Dead Sea to the Taurus-Zagros collision zone in the north. Formed in the Miocene about 17 Ma ago and related to the breakup of the Afro-Arabian continent, the DST accommodates the left-lateral movement between the two plates. The study area is located in the Arava Valley between the Dead Sea and the Red Sea, centered across the Arava Fault (AF), which constitutes the major branch of the transform in this region.<br /> <br /> A set of seismic experiments comprising controlled sources, linear profiles across the fault, and specifically designed receiver arrays reveals the subsurface structure in the vicinity of the AF and of the fault zone itself down to about 3-4 km depth. A tomographically determined seismic P velocity model shows a pronounced velocity contrast near the fault with lower velocities on the western side than east of it. Additionally, S waves from local earthquakes provide an average P-to-S velocity ratio in the study area, and there are indications for a variations across the fault. High-resolution tomographic velocity sections and seismic reflection profiles confirm the surface trace of the AF, and observed features correlate well with fault-related geological observations.<br /> <br /> Coincident electrical resistivity sections from magnetotelluric measurements across the AF show a conductive layer west of the fault, resistive regions east of it, and a marked contrast near the trace of the AF, which seems to act as an impermeable barrier for fluid flow. The correlation of seismic velocities and electrical resistivities lead to a characterisation of subsurface lithologies from their physical properties. Whereas the western side of the fault is characterised by a layered structure, the eastern side is rather uniform. The vertical boundary between the western and the eastern units seems to be offset to the east of the AF surface trace.<br /> <br /> A modelling of fault-zone reflected waves indicates that the boundary between low and high velocities is possibly rather sharp but exhibits a rough surface on the length scale a few hundreds of metres. This gives rise to scattering of seismic waves at this boundary. The imaging (migration) method used is based on array beamforming and coherency analysis of P-to-P scattered seismic phases. Careful assessment of the resolution ensures reliable imaging results.<br /> <br /> The western low velocities correspond to the young sedimentary fill in the Arava Valley, and the high velocities in the east reflect mainly Precambrian igneous rocks. A 7 km long subvertical scattering zone reflector is offset about 1 km east of the AF surface trace and can be imaged from 1 km to about 4 km depth. The reflector marks the boundary between two lithological blocks juxtaposed most probably by displacement along the DST. This interpretation as a lithological boundary is supported by the combined seismic and magnetotelluric analysis. The boundary may be a strand of the AF, which is offset from the current, recently active surface trace. The total slip of the DST may be distributed spatially and in time over these two strands and possibly other faults in the area.

Page generated in 0.0586 seconds