• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d’un mur capteur-stockeur solaire pour le chauffage des bâtiments à très basse consommation d’énergie / Experimental tests and modeling of a solar storage wall for low energy consumption building

Basecq, Vincent 28 September 2015 (has links)
L’exploitation des énergies renouvelables est une voie nécessaire afin de lutter contre le réchauffement climatique, et afin d’anticiper la raréfaction des matières premières. Le mur capteur/stockeur solaire appliqué aux bâtiments à très basses consommations d’énergie s’inscrit dans cette volonté d’une transition vers les énergies renouvelables. Dans le cadre de ces travaux de thèse, l’énergie solaire est stockée dans des matériaux à changement de phase qui permettent un stockage de chaleur latente plus dense que le stockage sensible des matériaux de construction traditionnels. Cette énergie est restituée à l’ambiance intérieure par la circulation d’air neuf à travers l’élément de stockage. Un mur capteur/stockeur solaire a été développé en s’appuyant sur une revue bibliographique préalable des différents travaux scientifiques menés pour des problématiques similaires. Le dispositif a été expérimenté en environnement réel dans un premier temps, intégré à l’enveloppe d’un petit bâtiment en bois fortement isolé. La quantité de chaleur captée par le mur peut atteindre 2 kWh.m-2.jour-1, pour une quantité de chaleur restituée à l’air de 1,5 kWh.jour-1. Le dispositif a été testé en conditions maîtrisées de laboratoire. Une attention particulière a été portée à la mesure de température au sein même du MCP, afin d’analyser le comportement thermique de ce dernier. Deux phénomènes ont été observés : le recouvrement de la phase liquide sur la phase solide et l’homogénéisation des températures en phase liquide. Le comportement thermique du MCP dépend des interactions entre trois flux : le flux de charge (apport solaire), le flux de décharge (énergie restituée à l’air) et un flux vertical induit par le recouvrement de la phase liquide sur la phase solide. Par ailleurs, un modèle numérique dynamique du mur capteur a été développé en volumes finis. Ce modèle permet de simuler l’effet de serre du mur capteur, le stockage de chaleur et les phases de solidification et de fusion du MCP, et la restitution de chaleur à l’air entrant dans le bâtiment. Les résultats numériques alors obtenus ont été confrontés aux données expérimentales. Le modèle a été validé pour la température d’air soufflée (en sortie du mur capteur). L’écart entre valeurs expérimentales, sur des périodes journalières, est en moyenne de 0,6°C pour la température d’air soufflé et est inférieur à 10 % pour l’énergie fournie à l’air préchauffé. Ces différences sont inférieures aux incertitudes de mesures et à l’incertitude du calcul énergétique. Le modèle ainsi validé peut être couplé au code de simulation thermique dynamique du bâtiment TRNSYS. / Use of renewable energy is a necessary way to fight global warming and to anticipate scarcity of raw materials. The solar/storage wall used in buildings with lower energy consumption meets this evolution to renewable energy sources. In this thesis, solar energy is stored in a phase charge material (PCM), which provides latent storage. The latent storage is higher than sensible storage in usual building materials. This energy is restored to indoor air, by circulation and heating of inlet air through the wall storage element. In this thesis work, the solar storage wall was developed, based on previous published works dealing with similar systems. An experiment has been carried out with the solar storage integrated in a small wood building with a high insulation. The solar energy recovered by the wall reaches 2 kWh.m-2.day-1 and 1,5 kWh.day-1 was restored to air. In a second experiment, a prototype was developed to be used in controlled laboratory conditions. Special attention was given to PCM temperature measures to analyze the PCM thermal behavior. Two phenomena were observed: (i) liquid phase recovering solid phase, (ii) temperature homogenization in liquid phase. The PCM thermal behavior depends on interactions between three energetic flows: the charge flow (solar energy recovered), the restored flow (energy restored to the inlet air) and a vertical flow created by the liquid phase recovering. Furthermore, a numerical dynamic model for the solar storage wall was developed. It is based on a finite volume approach. This model simulates: (i) the ground effect in a solar wall, (ii) the thermal energy storage and phase changes, and (iii) heat recovery energy to air inlet. Numerical results were compared to experimental values. The model was validated for air temperature for daily cycle defined with a charge period (during sunning) and a continue air heating. The difference between numerical values and experimental values are lower than 0.6°C in mean temperature, and 10% in energy. This difference is lower than measurement uncertainties and energy calculation error margins. So the model is valeted and can be coupled with the dynamic thermal simulation code: TRNSYS.

Page generated in 0.1931 seconds