• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 61
  • 37
  • 22
  • 20
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ventral Tegmental Area GABAA Receptors Mediate the Change from a Drug-naive to an Opiate- or Ethanol-deprived Motivational State

Ting-A-Kee, Ryan Anthony 31 August 2012 (has links)
A crucial question in drug addiction research concerns whether the varying reports of dopamine-independent and dopamine-dependent motivation can be integrated. According to one theory, the prior drug history of a subject — that is to say, whether they have received minimal or chronic drug exposure — determines whether opiate motivation is dependent upon the brainstem tegmental pedunculopontine nucleus (TPP) or dopamine neurotransmission. The biological analogue of this change is thought to be a switch in the signalling properties (from hyperpolarizing to depolarizing) of ventral tegmental area (VTA) gamma-aminobutyric acid subtype-A (GABAA) receptors. In this thesis, I demonstrate that the mechanisms underlying opiate motivation can be selected artificially by manipulating the signalling properties of VTA GABAA receptors, irrespective of the past drug history of the subject. Furthermore, I suggest that these same VTA GABAA receptors also play a similar role in controlling ethanol motivation. Indeed, the mechanisms underlying ethanol motivation can be doubly dissociated in a manner similar to that observed with opiates. However, whereas opiate motivation is TPP-dependent in the drug-naive state, I found that ethanol motivation was dependent on dopamine neurotransmission (via the D2 receptor) in drug-naive animals. Conversely, ethanol motivation was TPP-dependent in ethanol-deprived mice (as opposed to opiate motivation being dopamine-dependent in opiate-deprived animals). These effects are consistent with a VTA GABAA receptor switching mechanism identical to the one seen in the case of opiate motivation.
2

Ventral Tegmental Area GABAA Receptors Mediate the Change from a Drug-naive to an Opiate- or Ethanol-deprived Motivational State

Ting-A-Kee, Ryan Anthony 31 August 2012 (has links)
A crucial question in drug addiction research concerns whether the varying reports of dopamine-independent and dopamine-dependent motivation can be integrated. According to one theory, the prior drug history of a subject — that is to say, whether they have received minimal or chronic drug exposure — determines whether opiate motivation is dependent upon the brainstem tegmental pedunculopontine nucleus (TPP) or dopamine neurotransmission. The biological analogue of this change is thought to be a switch in the signalling properties (from hyperpolarizing to depolarizing) of ventral tegmental area (VTA) gamma-aminobutyric acid subtype-A (GABAA) receptors. In this thesis, I demonstrate that the mechanisms underlying opiate motivation can be selected artificially by manipulating the signalling properties of VTA GABAA receptors, irrespective of the past drug history of the subject. Furthermore, I suggest that these same VTA GABAA receptors also play a similar role in controlling ethanol motivation. Indeed, the mechanisms underlying ethanol motivation can be doubly dissociated in a manner similar to that observed with opiates. However, whereas opiate motivation is TPP-dependent in the drug-naive state, I found that ethanol motivation was dependent on dopamine neurotransmission (via the D2 receptor) in drug-naive animals. Conversely, ethanol motivation was TPP-dependent in ethanol-deprived mice (as opposed to opiate motivation being dopamine-dependent in opiate-deprived animals). These effects are consistent with a VTA GABAA receptor switching mechanism identical to the one seen in the case of opiate motivation.
3

Targeting opioid receptor signal transduction to produce sustained analgesia

Bull, Fiona A. January 2015 (has links)
Mu opioid receptors (MOPs) in the pain pathway contribute to morphine analgesia. Morphine also stimulates reward/reinforcement through disinhibition of dopaminergic (DA) neurones in the ventral tegmental area (VTA), an effect implicated in its abuse and dependence. We hope to develop approaches to achieve sustained analgesia without affecting reward by exploiting differential MOP signalling mechanisms in the pain and reward pathways. MOPs, delta opioid receptors (DOPs) and β-arrestin2 (BAR2) are all necessary components of the signalling complex in nociceptive neurones for morphine analgesic tolerance; c-Src (a tyrosine kinase), thought to couple to MOP receptors through BAR2 has also been implicated. To investigate opioid receptor signalling in response to morphine we used a variety of different techniques that included behavioural measures of nociception, reinforcement and locomotion and electrophysiological methods to study DRG neurones from the pain pathway and brain slices containing VTA neurones. This study in mice confirms that morphine administered subcutaneously (SC) causes analgesia, analgesic tolerance, and has psychomotor effects leading to enhanced locomotion and reinforcement. In VTA neurones morphine and the selective MOP receptor agonist DAMGO caused concentration-dependent inhibition of the frequency of IPSCs. All these actions of morphine were absent from MOP-/- mice. Morphine exhibited reduced potency as 1) an analgesic, 2) stimulator of locomotion, 3) a reinforcer in CPP and 4) an inhibitor of sIPSC frequency, when applied to MOP+/- mice or their VTA neurones. Morphine analgesic tolerance developed faster and to a greater extent in MOP+/- mice than in WT mice. DOP-/- mice exhibited morphine analgesia with less tolerance, as did BAR2-/- mice. BAR2-/- mice also exhibited reduced morphine locomotion and an increased sensitivity to morphine reinforcement. Morphine tolerance was absent from BAR2-/-//DOP-/- mice. The inhibition of sIPSC frequency by morphine was reduced in BAR2+/- and BAR2-/- VTA neurones. Dasatinib and PP2 (c-Src tyrosine kinase inhibitors) prevented the development of morphine tolerance in WT and MOP+/- mice and dasatinib caused its reversal in the latter. The drugs had no significant analgesic effect alone. Dasatinib did not affect morphine preference or locomotor activation. PP2 reduced morphine’s inhibition of sIPSC frequency. As c-Src inhibition does not appear to alter the psychomotor effects produced by morphine and it acts to reduce morphine analgesic tolerance. We believe that cSrc is an attractive target to prevent the development of morphine analgesic tolerance without affecting hedonic homeostasis.
4

Assessment of Ethanol and Nicotine Interactions in the Rat Model: Pharmacotherapeutics, Adolescence, and the Mesolimbic System

Waeiss, Robert Aaron 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol use disorder (AUD) and nicotine dependence often result in serious health problems and are top contributors to preventable deaths worldwide. Co-addiction to alcohol and nicotine is the most common form of polysubstance abuse. Epidemiological studies indicate that more than 80% of individuals diagnosed with AUD concurrently use nicotine. The prevalence of alcohol and nicotine comorbidity may stem from interconnected mechanisms underlying these disorders. A better understanding of how these drugs interact and the biological basis behind the high comorbidity rates could generate key targets for the development of more effective treatments for AUD and nicotine dependence. The following experiments utilized four similar overall groups consisting of vehicle, ethanol (EtOH), nicotine (NIC), and EtOH+NIC. Chapter Two investigated the efficacy of naltrexone and varenicline, the pharmacological ‘gold standards’ for treating AUD and nicotine dependence, on voluntary drug intake by rats selectively bred for high EtOH drinking. The results indicated that the standard treatments for AUD and nicotine dependence were effective at reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. Chapter Three examined the effects of peri-adolescent EtOH drinking on the ability of NIC infused into the posterior ventral tegmental area (pVTA) to stimulate dopamine release within the nucleus accumbens (NAc) shell during adulthood. The results suggest a cross-sensitization to NIC produced by peri-adolescent EtOH consumption demonstrated by a leftward and upward shift in the dose response curve. Chapter Four investigated the effects of intra-pVTA infusions on NAc shell neurochemistry, EtOH reward within the NAc shell, and the role of brain-derived neurotrophic factor (BDNF) on EtOH reward within that region. The data indicated that only EtOH+NIC significantly increased glutamate, dopamine, and BDNF in the NAc shell. Repeated pretreatment with EtOH+NIC also enhanced EtOH reward in the NAc shell and BDNF infusions were sufficient to recapitulate these findings. Collectively, the data indicate that concurrent exposure to EtOH and NIC results in unique neuroadaptations that promote future drug use. The failure to develop effective pharmacotherapeutics for AUD or nicotine dependence could be associated with examining potential targets in models that fail to reflect the impact of polydrug exposure. / 2020-04-03
5

Projection Neurons of the Nucleus Accumbens: An Intracellular Labeling Study

Chang, H. T., Kitai, S. T. 11 November 1985 (has links)
Projection neurons of nucleus accumbens (NAC) of the rat were identified by either antidromic activation from stimulation of midbrain ventral tegmental area-substantia nigra (VTA-SN) regions, or by tracing axons of intracellularly labeled NAC neurons into the ventral pallidum. The morphology of these NAC projection neurons were determined to be medium spiny neurons similar to those identified in the caudate-putamen.
6

Gestational and Postnatal Exposure to a Contaminant Mixture: Effects on Estrogen Receptor Protein Expression In the Postpartum Maternal Brain

Konji, Sandra 05 February 2019 (has links)
Maternal behaviours are those that increase offspring survival. Estrogens affect maternal behaviour by activating Estrogen Receptors (ER) in the brain. Maternal brain plasticity was explored by characterizing the effects of exposure to a mixture of environmental pollutants on number of ERs. Following exposure to the toxicants during pregnancy and lactation, brains of female rats were collected, sectioned at 30 μm and immunohistochemistry for ERα performed. Immuno-positive cells in the mPOA, VTA and NAc were counted. A two way ANOVA revealed no main effect of Treatment on the number of immunopositive cells for all three brain regions. However, a significant difference between the High and Low Doses with the high dose reducing the number of ERα+ cells in the mPOA and VTA. Our work showcases the importance of studying the effects of multiple chemical co-exposures on the mother's brain, as maternal brain changes impact maternal behaviour consequently affecting offspring neurodevelopment.
7

The role of ventral tegmental dopamine neurons and the effects of central and peripheral dopamine agonists on fear motivation as measured by the potentiated acoustic startle reflex in rats

Borowski, Thomas Brian 01 January 1997 (has links)
The involvement of dopamine (DA) in the emotional and psychiatric disturbances associated with schizophrenia and psychomotor stimulant abuse is well known; however, the mechanism by which DA mediates fear expression and anxiety is not well defined. Accordingly, the objective of the present thesis was to determine the fear-motivational functions of DA neurons in the ventral tegmental area (VTA) and to examine the role of DA in fear extinction using the potentiated startle paradigm. In Experiment 1, it was observed that electrical stimulation of the VTA produced a pronounced increase in the amplitude of the acoustic startle reflex. In subsequent experiments fear-potentiated startle was assessed following axon-sparing N-methyl-D-aspartic acid (NMDA) lesions of the VTA and after bilateral intra-VTA infusion of the DA D<sub>2/3</sub> receptor agonist quinpirole (Experiments 2-4). The NMDA lesions resulted in substantial cell loss in the medial ventral tegmentum and blocked fear-potentiated startle. Similarly, inhibition of DA neuronal activity associated with locally-administered quinpirole suppressed the expression of the conditioned fear-induced increase in startle amplitudes. The quinpirole results implicate DA neuronal functioning in fear motivation. To explore further the involvement of DA in aversive emotional behavior, pharmacological experiments were conducted in which the effects of peripherally-administered DA agonist drugs on fear extinction were assessed. Subjects in Experiment 5 received an acute injection of either cocaine hydrochloride (40.0 mg/kg), d-amphetamine sulphate (5.0 mg/kg), the D<sub>2/3</sub> agonist quinpirole hydrochloride (5.0 mg/kg), or the D<sub>1</sub>-type agonist SKF 38393 (5.0 mg/kg) during a single extinction session following fear acquisition. Animals treated with cocaine, d-amphetamine, and SKF 38393 exhibited fear-potentiated startle, whereas quinpirole treatment failed to alter fear extinction to the nonreinforced conditioned stimulus (CS). Also, it was revealed using a within-subjects design in Experiment 6 that cocaine administration reinstated fear-potentiated startle following extinction. Taken together, the results of the present experiments suggests fundamental role for DA and DA D<sub>1</sub> receptors in fear expression. It was proposed that VTA DA neurons gate levels of aversive emotional arousal within the amygdala-based fear system.
8

Role of Cocaine-Induced Protein Kinase Mzeta Expression in the Ventral Tegmental Area

Chang, Yu-Hua 01 August 2010 (has links)
The mesolimbic dopamine system, including dopaminergic projections from the ventral tegmental area (VTA) to nucleus accumbens (NAc), is critically involved in the development of addiction to many drugs of abuse, including cocaine (CA). Although there is an attractive hypothesis that the modifications of mesolimbic reward circuit following repeated drug exposure are responsible for cocaine-addicted causes behaviors change, however, our understanding in the underlying molecular mechanisms at the neural circuit level is still in its infancy. It has been suggested PKMzeta, a constitutively active atypical isoform of PKC, plays a critical role in spatial memory formation and long-term synaptic potentiation in hippocampus. To define the relationship among PKMzeta, CA-induced synaptic long-term potentiation and CA addiction, we examined the regulation of PKMzeta after CA administration in Sprague-Dawley rat. We found single CA injection elicits an increase in PKMzeta protein expression in the VTA region. The increase was first observed 10 min after CA administration and lasted for 7 days, the longest sampling time point of our experimental design. The PKMzeta protein expression can also be induced in 10 minutes while incubating the acute isolated brain slice with CA, the expression within 1 hr can be eliminated at the present of Chelerythrine (PKC inhibitor) and ZIP (PKMzeta inhibitor) suggests a positive feedback loop. The PKMzeta mRNA expression can be induced within 1 hr, and Actinomycin d (transcription inhibitor) had no effect on the PKMzeta protein expression indicating CA increases PKM£a translation from preexisting PKM£a mRNA. Furthermore,real time PCR-based analysis showed resembling increase profile ofPKM£a mRNA after single CA injection, suggesting a co-upregulation of transcription and translation of PKM£a after CA administration in VTA. Eticlopride (dopamine receptor D2-subtype antagonist) ¡BSCH-23390(dopamine receptor D1-subtype antagonist)¡BH-89 (PKA inhibitor)¡B Wortmannin (PI3K inhibitor)¡BPD98059 (MEK1 inhibitor) decreasedcocaine-induced PKM£a expression within 1 hr in VTA. On the contrary, KN-62 (CaMK II inhibitor) has no obvious effect on PKM£a expression. CA challenge not only induces the PKM£a expression in the VTA region but also in the NAc and hippocampus region. The CA-induced PKM£a expression is more obvious in elder group (>45 days in age) than younger group (18~30 days in age), similar results also showed in the locomotor activity assay. Prenatal CA exposure decreased the postnatal CA-induced PKM£a expression and the locomotor sensitivity in younger group. Overall, results from our current experiments have raised the possibility of PKM£a involvement in CA addiction. How CA regulates PKM£a expression and the context dependence between PKM£a and CA-induced behavior change and synaptic long-term potentiation remains further elucidation.
9

Role of protein kinase M£a in cocaine-induced drug addiction

Ho, Shih-Yin 22 October 2012 (has links)
Addiction is a chronic disease that characterize as habitual or compulsive involvement in an activity despite it¡¦s bring negative consequences. Some of psystimulants such as cocaine or amphetamine cause a strong reinforcing effects even after prolonged abstinence periods. Such illegal drugs not only hurt on the adult health but also result in fetal physiological damage. For example, that babies born to mothers who abuse with cocaine bring prematurely delivered, low birth weights, smaller head circumferences and increased heart disease in adult offspring. Mesolimbic dopamine system include nucleus accumbens (NAc) and ventral tegmental area (VTA) are critical regions for the neural adaptations that contribute to addiction. VTA that receives inputs from a large number of brain regions. For example, it receives glutamatergic inputs from prefrontal cortex, or GABAergic inputs from NAc. It has been known that VTA play a major role in the acquisition and expression of learned addictive behaviors. Results from many neuropharmacological studies in animal models indicate that exposure to cocaine or some other drugs of abuse seems to induce long-term potentiation (LTP) ¢w like changes of synaptic plasticity among neurons in VTA region. LTP was first described in hippocampus, a region that associated with memory formation, and were found widespread events in many mammalian brain sites. In the present time, theories and investigation indicated that memory and addiction might shared the similar neural circuitry and signal pathways. In general, LTP can be separate into two main phases : induction and maintenance phases. Many of molecules participate in induction phase such as calcium/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP (cAMP), phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC). However, until now there was only one molecule has been found associated with LTP maintenance¡Xprotein kinase M£a (PKM£a). PKM£a is a brain specific, constitutively active form of PKC that does not need Ca2+ or diacylglycerol (DAG) for its activation. Molecular evidences showed that PKM£a is translated uniquely by PKM£a mRNA which is generated under the control of an internal promoter in the PKC£a gene. Recently, investigators introduced a PKM£a selective inhibitor¡XZIP, to hippocampus or insular cortex both successful to eliminate long-term spatial memory or conditioned taste aversion (CTA) behavior, respectively, on rat. Therefore, exclude PKM£a by specific inhibitors and then result in abolish long-term synaptic potentiation which had already established seem to be a leading candidate for cure addiction. Here we showed that blocked of PKM£a activity in VTA dopaminergic neuron eliminated mEPSCs or AMPAR/NMDAR ratio increment elicited by cocaine. Otherwise, our results also presented that myristoylatedinhibitory peptide¢wZIP had no effect on spike timing-dependent long-term potentiation in rats previously injected with saline but remarkably restored spike timing-dependent long-term potentiation in VTA dopamine neurons in slices prepared from rats that received single or multiple cocaine exposure. Furthermore, our western blot analyses showed that both single and five consecutive cocaine injections induced a significant increase in PKM£a level in VTA or NAc. Moreover, our ex vivo cocaine incubation results indicated that multiple kinases activation or de novo protein synthesis was required for PKM£a increment. The most important, our data provided the first physiological evidence between PKM£a and drug addiction when intracranial administered specific PKM£a inhibitors to VTA reversed cocaine-induced conditioned-place preference (CPP) behavior. Finally, we investigated the behavioral effect of cocaine-induced locomotor sensitization in an open field apparatus. Our data showed that peri-adolescent (P21) rats exhibited prominently increased in either acute or repeated cocaine-induced locomotor activity than mid-adolescent (P28) and post-adolescent (P41). Interestingly, applied to high dosage cocaine (30 mg/kg) rescued the acute locomotor response in P28 rats but not behavioral sensitization. We further examined the locomotion on rats that were exposed to cocaine in utero after single or multiple cocaine injection. However, cocaine-induced increase in locomotor activity was lower in P21 rats which exposed to cocaine during pregnancy but no significantly difference in P28 rats. Surprisingly, single high dose cocaine treatment caused a marked reduction in locomotor activity on P21 rats prenatally exposed to cocaine. Otherwise, we also provided the first evidences that repeated cocaine injection in pregnant rats induced a significant decreased to KCC2 level in PFC regions prepared from P20 rat. In conclusion, results from our current studies demonstrate for the first time that persistently active PKM£a is necessary in (1) mEPSC facilitation induced by single cocaine exposure; (2) cocaine-induced enhancement in AMPAR/NMDAR ratio; (3) single or repeated cocaine-induced LTP but not in LTP induced by spike-timing stimulation; and (4) cocaine conditioned place preference in the VTA. In addition, our results also present evidence that the expression of PKM£a is increased by either single or repeated cocaine exposure. Furthermore, our behavioral or Western blotting consequence of cocaine treatment in utero was reflected by the diminishion in the sensitivity of locomotor activity in postnatal rats to cocaine and KCC2 level in PFC regions.
10

Elucidating the fear - maintaining properties of the Ventral Tegmental Area

Taylor, Amanda Lee January 2008 (has links)
The ventral tegmental area (VTA) and its dopaminergic (DA) mesocorticolimbic projections are thought to be essential in the brain’s reward neurocircuitry. In humans and animal experimental subjects, mild electrical VTA stimulation increases dopamine levels and can induce euphoria. Paradoxically, aversive stimuli activate VTA neurons and forebrain DA activity, and excessive electrical stimulation of the VTA exaggerates fearfulness. Research suggests that experimental manipulation of either the amygdala or the VTA has similar effects on the acquisition and expression of Pavlovian conditioned fear. Recently it was demonstrated that electrical stimulation of the amygdala produced fear extinction deficits in rats. Fear extinction involves the progressive dissipation of conditioned fear responses by repeated non-reinforced exposure to a conditioned stimulus (CS). Maladaptive states of fear in fear-related anxiety disorders, such as post-traumatic stress disorders (PTSD) or specific phobias are thought to reflect fear extinction learning deficits. The primary purpose of the present study was to examine the effects of intra-VTA stimulation on fear extinction learning. Using fear-potentiated startle as a behavioural index of conditioned fear, it was found that 120 VTA stimulations paired or unpaired with non-reinforced CS presentations impaired the extinction of conditioned fear. This effect was not apparent in rats that received electrical stimulation of the substantia nigra (SN), suggesting that not all midbrain regions respond similarly. Electrical stimulation parameters did not have aversive affects because rats failed to show fear conditioning when electrical VTA stimulation was used as the unconditioned stimulus. Also, VTA stimulation did not alter conditioned fear expression in non-extinguished animals. Based on the results it is suggested that VTA activation disinhibited conditioned fear responding. Therefore, VTA neuronal excitation by aversive stimuli may play a role in fear-related anxiety disorders thought to reflect extinction learning deficits.

Page generated in 0.3205 seconds