• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VERILOG DESIGN AND FPGA PROTOTYPE OF A NANOCONTROLLER SYSTEM

Vummannagari, Akshay 01 January 2010 (has links)
Many new fabrication technologies, from nanotechnology and MEMS to printed organic semiconductors, center on constructing arrays of large numbers of sensors, actuators, or other devices on a single substrate. The utility of such an array could be greatly enhanced if each device could be managed by a programmable controller and all of these controllers could coordinate their actions as a massively-parallel computer. Kentucky Architecture nanocontroller array with very low per controller circuit complexity can provide efficient control of nanotechnology devices. This thesis provides a detailed description of the control hierarchy of a digital system needed to build "nanocontrollers" suitable for controlling millions of devices on a single chip. A Verilog design and FPGA prototype of a nanocontroller system is provided to meet the constraints associated with a massively-parallel programmable controller system.
2

Static Analysis for Circuit Families

Salama, Cherif 05 1900 (has links)
As predicted by Gordon Moore, the number of transistors on a chip has roughly doubled every two years. Microprocessors featuring over a billion transistors are no longer science fiction. For example, Intel’s Itanium 9000 series and Intel’s Xeon 7400 series of processors feature 1.7 and 1.9 billion transistors respectively. To keep up with the emerging needs of contemporary very large scale integration (VLSI) design, industrial hardware description languages (HDLs) like Verilog and VHDL must be significantly enhanced. This thesis pinpoints some of the main shortcomings of the latest Verilog standard (IEEE 1364-2005) and shows how to overcome them by extending the language in a backward compatible way. To be able to cope with more complex circuits, well-understood higher-level abstraction mechanisms are needed. Verilog is already equipped with promising generative constructs making it possible to concisely describe a family of circuits as a parameterized module; however these constructs suffer from two problems: First, their expressivity is limited and second, they are not adequately supported by current tools. For instance, there are no static guarantees about the properties of the description generated as a result of instantiating a generic description with particular parameter values. Addressing both problems while remaining backward compatible led us to select a statically typed two-level languages (STTL) formal framework. By formalizing a core subset of Verilog as an STTL, we were able to define a static type system capable of: 1) checking the realizability of a description, 2) detecting bus width mismatches and array bounds violations, and 3) providing parametric guarantees on the resources required to realize a generic description. The power of the chosen framework is once more demonstrated as it also allows us to enrich the language with a new set of constructs that are designed to be expanded away when instantiated. To experiment with these ideas we implemented VPP, a Verilog Preprocessor with a built-in type checker. VPP is an unobtrusive tool accepting extended Verilog descriptions but generating descriptions compatible with any tool compliant with the Verilog standard. Our experience throughout this research showed that STTLs present a particularly suitable framework to formalize and implement generative features of a language. / Rice University, National Science Foundation (NSF) SoD award 0439017, Intel Corporation, Semiconductor Research Corporation (SRC) Task ID 1403.001

Page generated in 0.05 seconds