Spelling suggestions: "subject:"verjovsky's conjecture"" "subject:"arjovsky's conjecture""
1 |
Ações de Anosov que são suspensões / Anosov action which are suspensionsLopes, Rodrigo Ribeiro 18 April 2016 (has links)
Este trabalho é destinado a mostrar soluções parciais para a conjectura de Verjovsky para ações, a qual afirma que: Toda ação Anosov de codimensão 1 irredutível de Rk sobre uma variedade compacta M de dimensão maior do que k+2 é topologicamente equivalente a suspensão de uma ação Anosov de Zk. Os teoremas principais da tese são dois. No primeiro, generalizamos um teorema devido a Barbot e Maquera [1], provando que sob as hipóteses da conjectura e supondo que se Ess ⊕ Euu é de classe C1, então a ação é topologicamente equivalente a suspensão de uma ação de Zk. Este resultado também é uma extensão de um teorema, para fluxos de Anosov (k = 1), devido a Ghys [2]. Para mostrar este resultado foi necessário desenvolver um análogo da teoria, que mostra a existência das partições de Markov para fluxos devido a Ratner [3], para ações Anosov. Finalmente, no segundo resultado principal, retiramos a hipótese da ação ser irredutível e provamos que se alguma das folheações fortes não é minimal então a conjectura é verdadeira. Para provar este resultado foi necessário estendermos um teorema de Plante [4]. / This work is destined to show parcial results for the Verjosvkys conjecture for actions, which says that Every irreducible codimension-one Anosov action of Rk on a manifold M of dimension at least k+3 is topologically conjugate to the suspension of a Anosov action of Zk. The main results are two. In the first, we show that if Ess ⊕ Euu is C1 then the Verjosvkys conjecture does hold, generalizing Barbot-Maqueras theorem [1]. This theorem is also an extension of a result, for flows, of Ghys [2]. An important step to show this theorem was to construct the Markov system for Anosov actions. The Markov system has similar properties of Markov partitions for Anosov flows obtained by Ratner,[3]. Finally, in the second main theorem, without irreducibility, we show that if some strong foliation is not minimal then the conjecture is true. For to prove this result, was necessary we extend a Plante\'s theorem,[4].
|
2 |
Ações de Anosov que são suspensões / Anosov action which are suspensionsRodrigo Ribeiro Lopes 18 April 2016 (has links)
Este trabalho é destinado a mostrar soluções parciais para a conjectura de Verjovsky para ações, a qual afirma que: Toda ação Anosov de codimensão 1 irredutível de Rk sobre uma variedade compacta M de dimensão maior do que k+2 é topologicamente equivalente a suspensão de uma ação Anosov de Zk. Os teoremas principais da tese são dois. No primeiro, generalizamos um teorema devido a Barbot e Maquera [1], provando que sob as hipóteses da conjectura e supondo que se Ess ⊕ Euu é de classe C1, então a ação é topologicamente equivalente a suspensão de uma ação de Zk. Este resultado também é uma extensão de um teorema, para fluxos de Anosov (k = 1), devido a Ghys [2]. Para mostrar este resultado foi necessário desenvolver um análogo da teoria, que mostra a existência das partições de Markov para fluxos devido a Ratner [3], para ações Anosov. Finalmente, no segundo resultado principal, retiramos a hipótese da ação ser irredutível e provamos que se alguma das folheações fortes não é minimal então a conjectura é verdadeira. Para provar este resultado foi necessário estendermos um teorema de Plante [4]. / This work is destined to show parcial results for the Verjosvkys conjecture for actions, which says that Every irreducible codimension-one Anosov action of Rk on a manifold M of dimension at least k+3 is topologically conjugate to the suspension of a Anosov action of Zk. The main results are two. In the first, we show that if Ess ⊕ Euu is C1 then the Verjosvkys conjecture does hold, generalizing Barbot-Maqueras theorem [1]. This theorem is also an extension of a result, for flows, of Ghys [2]. An important step to show this theorem was to construct the Markov system for Anosov actions. The Markov system has similar properties of Markov partitions for Anosov flows obtained by Ratner,[3]. Finally, in the second main theorem, without irreducibility, we show that if some strong foliation is not minimal then the conjecture is true. For to prove this result, was necessary we extend a Plante\'s theorem,[4].
|
Page generated in 0.3108 seconds