• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Módulos tipo Verma sobre álgebra TKK afim estendida / Verma type module over an extended affine TKK algebra.

Sargeant, Anliy Natsuyo Nashimoto 30 March 2007 (has links)
As álgebras TKK afins estendidas pertencem à classe de álgebras de Lie chamada álgebras de Lie afins estendidas do tipo $A_1$. Elas são obtidas a partir de um semi-reticulado do $\\mathbbR^n$. Estudamos a estrutura dos módulos tipo Verma sobre a álgebra TKK afim estendida para um semi-reticulado (não-reticulado) do $\\mathbbR^2$. Quando fixamos um conjunto positivo de raízes isotrópicas chamado standard encontramos quatro órbitas da subálgebra de Borel que dão origem a distintos módulos tipo Verma sobre a álgebra TKK afim estendida. Estudamos as estruturas de seus submódulos e encontramos critérios de irredutibilidade para os módulos de Verma clássico e imaginário. / The extended affine TKK Lie algebras belong to a class of Lie algebras called extended affine Lie algebras of type $A_1$. They are obtained from a semilattice on $\\mathbbR^n$. We studied the structure of the Verma type modules for the extended affine TKK algebra obtained from a semi-lattice (non-lattice) on $\\mathbbR^2$. Fixing a set of positive isotropic roots called standard we found four orbits of the Borel subalgebra each of which give distinct Verma modules for the extended affine TKK algebra. We studied the structures of their submodules and found a criteria for irreducibility for the classic and imaginary Verma modules.
2

Módulos tipo Verma sobre álgebra TKK afim estendida / Verma type module over an extended affine TKK algebra.

Anliy Natsuyo Nashimoto Sargeant 30 March 2007 (has links)
As álgebras TKK afins estendidas pertencem à classe de álgebras de Lie chamada álgebras de Lie afins estendidas do tipo $A_1$. Elas são obtidas a partir de um semi-reticulado do $\\mathbbR^n$. Estudamos a estrutura dos módulos tipo Verma sobre a álgebra TKK afim estendida para um semi-reticulado (não-reticulado) do $\\mathbbR^2$. Quando fixamos um conjunto positivo de raízes isotrópicas chamado standard encontramos quatro órbitas da subálgebra de Borel que dão origem a distintos módulos tipo Verma sobre a álgebra TKK afim estendida. Estudamos as estruturas de seus submódulos e encontramos critérios de irredutibilidade para os módulos de Verma clássico e imaginário. / The extended affine TKK Lie algebras belong to a class of Lie algebras called extended affine Lie algebras of type $A_1$. They are obtained from a semilattice on $\\mathbbR^n$. We studied the structure of the Verma type modules for the extended affine TKK algebra obtained from a semi-lattice (non-lattice) on $\\mathbbR^2$. Fixing a set of positive isotropic roots called standard we found four orbits of the Borel subalgebra each of which give distinct Verma modules for the extended affine TKK algebra. We studied the structures of their submodules and found a criteria for irreducibility for the classic and imaginary Verma modules.
3

Opérateurs de Rankin-Cohen et matrices de fusion / Rankin-Cohen Operators and fusion matrices

Medina luna, Manuel Jair 26 January 2016 (has links)
Ce travail est consacré a l'étude des déformations covariantes des orbites co-adjointes du groupe de Lie SL(2,R).Nous établissons un lien entre des méthodes de quantification basées sur les crochets de Rankin-Cohen et les matrices de fusion pour les modules de Verma. Par ailleurs nous formalisons et étudions la notion associée d'algèbre de Rankin-Cohen qui contrôle l'associativité de ces déformations. / This work is devoted to the study of covariant star-product on coadjointorbits of the Lie group SL(2,R). We establish a correspondence between two quantization methods. The first is based on the Rankin-Cohen brackets and the second is based in the canonical element associate to the Shapovalov form and fusion matrices for Verma modules.Furthermore we formalize and study the associated notion of non-commutative algebra that controls the associativity of these deformations.

Page generated in 0.0316 seconds