Spelling suggestions: "subject:"verossimilhança penalized"" "subject:"verossimilhança penalização""
11 |
Modelos mistos aditivos semiparamétricos de contornos elípticos / Elliptical contoured semiparametric additive mixed models.Pulgar, Germán Mauricio Ibacache 14 August 2009 (has links)
Neste trabalho estendemos os modelos mistos semiparamétricos propostos por Zhang et al. (1998) para uma classe mais geral de modelos, a qual denominamos modelos mistos aditivos semiparamétricos com erros de contornos elípticos. Com essa nova abordagem, flexibilizamos a curtose da distribuição dos erros possibilitando a escolha de distribuições com caudas mais leves ou mais pesadas do que as caudas da distribuição normal padrão. Funções de verossimilhança penalizadas são aplicadas para a obtenção das estimativas de máxima verossimilhança com os respectivos erros padrão aproximados. Essas estimativas, sob erros de caudas pesadas, são robustas no sentido da distância de Mahalanobis contra observações aberrantes. Curvaturas de influência local são obtidas segundo alguns esquemas de perturbação e gráficos de diagnóstico são propostos. Exemplos ilustrativos são apresentados em que ajustes sob erros normais são comparados, através das metodologias de sensibilidade desenvolvidas no trabalho, com ajustes sob erros de contornos elípticos. / In this work we extend the models proposed by Zhang et al. (1998) to a more general class of models, know as semiparametric additive mixed models with elliptical errors in order to allow distributions with heavier or lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data, the local influence curvatures are derived and some diagnostic graphics are proposed. Motivating examples preliminary analyzed under normal errors are reanalyzed under some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
|
12 |
Modelos mistos aditivos semiparamétricos de contornos elípticos / Elliptical contoured semiparametric additive mixed models.Germán Mauricio Ibacache Pulgar 14 August 2009 (has links)
Neste trabalho estendemos os modelos mistos semiparamétricos propostos por Zhang et al. (1998) para uma classe mais geral de modelos, a qual denominamos modelos mistos aditivos semiparamétricos com erros de contornos elípticos. Com essa nova abordagem, flexibilizamos a curtose da distribuição dos erros possibilitando a escolha de distribuições com caudas mais leves ou mais pesadas do que as caudas da distribuição normal padrão. Funções de verossimilhança penalizadas são aplicadas para a obtenção das estimativas de máxima verossimilhança com os respectivos erros padrão aproximados. Essas estimativas, sob erros de caudas pesadas, são robustas no sentido da distância de Mahalanobis contra observações aberrantes. Curvaturas de influência local são obtidas segundo alguns esquemas de perturbação e gráficos de diagnóstico são propostos. Exemplos ilustrativos são apresentados em que ajustes sob erros normais são comparados, através das metodologias de sensibilidade desenvolvidas no trabalho, com ajustes sob erros de contornos elípticos. / In this work we extend the models proposed by Zhang et al. (1998) to a more general class of models, know as semiparametric additive mixed models with elliptical errors in order to allow distributions with heavier or lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data, the local influence curvatures are derived and some diagnostic graphics are proposed. Motivating examples preliminary analyzed under normal errors are reanalyzed under some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
|
13 |
Análise de diagnóstico em modelos semiparamétricos normais / Diagnostic analysis in semiparametric normal modelsGleyce Rocha Noda 18 April 2013 (has links)
Nesta dissertação apresentamos métodos de diagnóstico em modelos semiparamétricos sob erros normais, em especial os modelos semiparamétricos com uma variável explicativa não paramétrica, conhecidos como modelos lineares parciais. São utilizados splines cúbicos para o ajuste da variável resposta e são aplicadas funções de verossimilhança penalizadas para a obtenção dos estimadores de máxima verossimilhança com os respectivos erros padrão aproximados. São derivadas também as propriedades da matriz hat para esse tipo de modelo, com o objetivo de utilizá-la como ferramenta na análise de diagnóstico. Gráficos normais de probabilidade com envelope gerado também foram adaptados para avaliar a adequabilidade do modelo. Finalmente, são apresentados dois exemplos ilustrativos em que os ajustes são comparados com modelos lineares normais usuais, tanto no contexto do modelo aditivo normal simples como no contexto do modelo linear parcial. / In this master dissertation we present diagnostic methods in semiparametric models under normal errors, specially in semiparametric models with one nonparametric explanatory variable, also known as partial linear model. We use cubic splines for the nonparametric fitting, and penalized likelihood functions are applied for obtaining maximum likelihood estimators with their respective approximate standard errors. The properties of the hat matrix are also derived for this kind of model, aiming to use it as a tool for diagnostic analysis. Normal probability plots with simulated envelope graphs were also adapted to evaluate the model suitability. Finally, two illustrative examples are presented, in which the fits are compared with usual normal linear models, such as simple normal additive and partially linear models.
|
Page generated in 0.0577 seconds