Spelling suggestions: "subject:"very large scale kontextintegration design"" "subject:"very large scale kontextintegration 1design""
21 |
Optimal geometric design of VLSI interconnect networks by simulated annealing.January 1995 (has links)
by Sau-yuen Wong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 77-82). / Acknowledgement --- p.i / Abstract --- p.ii / List of Tables --- p.ii / List of Figures --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Review of Previous Work --- p.4 / Chapter 2.1 --- Optimization of Delay and Layout Design --- p.4 / Chapter 2.2 --- Simulated Annealing --- p.8 / Chapter 3 --- Definition of Circuit Model --- p.12 / Chapter 4 --- Evaluation of Delay --- p.16 / Chapter 4.1 --- RC-tree and Elmore Delay --- p.16 / Chapter 4.2 --- Exponential Decayed Polynomial Function --- p.17 / Chapter 4.3 --- Two-pole Approximation --- p.18 / Chapter 4.4 --- AWE and Adopted Delay Model --- p.19 / Chapter 5 --- Delay Minimization by Simulated Annealing --- p.28 / Chapter 5.1 --- Cost Function --- p.28 / Chapter 5.2 --- Neighbor Moves --- p.30 / Chapter 5.2.1 --- Logical models --- p.31 / Chapter 5.2.2 --- Discretization of Solution Space --- p.32 / Chapter 5.2.3 --- Valid Configurations --- p.35 / Chapter 5.2.4 --- Valid Moves --- p.39 / Chapter 5.2.5 --- Modification to the Newly Generated Graph --- p.41 / Chapter 5.2.6 --- Access to Neighbor configuration --- p.43 / Chapter 5.2.7 --- Reduction of Solution Space --- p.45 / Chapter 5.2.8 --- Correctness of the Algorithm --- p.48 / Chapter 5.2.9 --- Completeness of the Algorithm --- p.49 / Chapter 6 --- Experimental result --- p.56 / Chapter 6.1 --- Optimization of Overall Performance --- p.58 / Chapter 6.2 --- Optimization on Individual Delay --- p.70 / Chapter 7 --- Conclusion --- p.74 / A --- p.76 / Bibliography
|
22 |
A novel asynchronous cell library for self-timed system design.January 1995 (has links)
by Eva Yuk-Wah Pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 88-89). / ACKNOWLEDGEMETS / ABSTRACT / LIST OF FIGURES / LIST OF TABLES / Chapter CHAPTER1 --- INTRODUCTION / Chapter 1.1 --- Motivation --- p.1-1 / Chapter 1.1.1 --- Problems with Synchronous Systems --- p.1-1 / Chapter 1.1.2 --- The Advantages of Self-timed Systems --- p.1-2 / Chapter 1.1.3 --- Self-Timed Cell Library --- p.1-3 / Chapter 1.2 --- Overview of the Thesis --- p.1-5 / Chapter CHAPTER2 --- BACKGROUND / Chapter 2.1 --- Introduction --- p.2-1 / Chapter 2.2 --- Models for Asynchronous System --- p.2-2 / Chapter 2.2.1 --- Huffman model --- p.2-2 / Chapter 2.2.2 --- Muller model --- p.2-4 / Chapter 2.3 --- Self-timed System --- p.2-5 / Chapter 2.3.1 --- Definitions and Assumptions --- p.2-6 / Chapter 2.4 --- Design Methodologies --- p.2-8 / Chapter 2.4.1 --- Differential Logic Structure Design Methodology --- p.2-9 / Chapter 2.4.1.1 --- Data Path --- p.2-9 / Chapter 2.4.1.2 --- Control Path --- p.2-10 / Chapter 2.4.2 --- Micropipeline Design Methodology --- p.2-12 / Chapter 2.4.2.1 --- Data Path --- p.2-12 / Chapter 2.4.2.2 --- Control Path --- p.2-13 / Chapter CHAPTER3 --- SELF-TIMED CELL LIBRARY / Chapter 3.1 --- Introduction --- p.3-1 / Chapter 3.2 --- Muller C element --- p.3-1 / Chapter 3.3 --- Differential Cascode Voltage Switch Logic Circuits --- p.3-6 / Chapter 3.3.1 --- INVERTER --- p.3-8 / Chapter 3.3.2 --- "AND, OR, NAND, NOR" --- p.3-8 / Chapter 3.3.3 --- "XOR, XNOR" --- p.3-10 / Chapter 3.4 --- Latches --- p.3-11 / Chapter 3.4.1 --- Precharged Latch --- p.3-12 / Chapter 3.4.2 --- Capture and Pass Latch --- p.3-12 / Chapter 3.5 --- Delay Elements --- p.3-13 / Chapter 3.6 --- Discussion --- p.3-15 / Chapter CHAPTER4 --- THE CHARACTERISTICS OF SELF-TIMED CELL LIBRARY / Chapter 4.1 --- Introduction --- p.4-1 / Chapter 4.2 --- The Simulation Characteristics --- p.4-2 / Chapter 4.2.1 --- HSPICE program --- p.4-2 / Chapter 4.2.2 --- Characterization Information and Datasheet terms --- p.4-5 / Chapter 4.2.3 --- Characterization values --- p.4-6 / Chapter 4.3 --- The Experimental Analysis --- p.4-6 / Chapter 4.4 --- Experimental Result and Discussion --- p.4-9 / Chapter 4.4.1 --- Experimental Result --- p.4-9 / Chapter 4.4.2 --- Comparison of the characteristics of C-elements --- p.4-12 / Chapter 4.4.3 --- Comparison of simulation with experimental results --- p.4-13 / Chapter 4.4.4 --- Properties of DCVSL gate --- p.4-14 / Chapter 4.4.5 --- The Characteristics of Delay elements --- p.4-15 / Chapter 4.5 --- CAD Features on Cadence --- p.4-16 / Chapter CHAPTER5 --- DESIGN EXAMPLE: SELF-TIMED MATRIX MULTIPLIER / Chapter 5.1 --- Introduction --- p.5-1 / Chapter 5.2 --- A Matrix Multiplier using DCVSL structure --- p.5-2 / Chapter 5.2.1 --- Structure --- p.5-2 / Chapter 5.2.2 --- Handshaking Control Circuit --- p.5-3 / Chapter 5.2.2.1 --- Handshaking Control Circuit of Pipeline --- p.5-4 / Chapter 5.2.2.2 --- Handshaking Control Circuit of Feedback Path --- p.5-8 / Chapter 5.3 --- A Matrix Multiplier using Micropipeline Structure --- p.5-10 / Chapter 5.3.1 --- Structure --- p.5-10 / Chapter 5.3.2 --- Control Circuit --- p.5-12 / Chapter 5.4 --- Experimental Result --- p.5-13 / Chapter 5.4.1 --- The Matrix Multiplier using DCVSL structure --- p.5-13 / Chapter 5.4.2 --- The Matrix Multiplier using Micropipeline structure --- p.5-16 / Chapter 5.5 --- Comparison of DCVSL structure and Micropipeline structure --- p.5-18 / Chapter CHAPTER6 --- CONCLUSION / Chapter 6.1 --- Achievement --- p.6-1 / Chapter 6.1.1 --- Self-timed Cell Library --- p.6-1 / Chapter 6.1.2 --- Self-timed System Design simplification --- p.6-2 / Chapter 6.1.3 --- Area and Speed --- p.6-3 / Chapter 6.1.4 --- Applications --- p.6-4 / Chapter 6.2 --- Future work --- p.6-6 / Chapter 6.2.1 --- Interface with synthesis tools --- p.6-6 / Chapter 6.2.2 --- Mixed Circuit Design --- p.6-6 / REFERENCES / APPENDICES
|
23 |
Task scheduling in VLSI circuit design: algorithm and bounds.January 1999 (has links)
by Lam Shiu-chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 107-113). / Abstracts in English and Chinese. / List of Figures --- p.v / List of Tables --- p.vii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Task Scheduling Problem and Lower Bound --- p.3 / Chapter 1.3 --- Organization of the Thesis --- p.4 / Chapter 2 --- Teamwork-Task Scheduling Problem --- p.5 / Chapter 2.1 --- Problem Statement and Notations --- p.5 / Chapter 2.2 --- Classification of Scheduling --- p.7 / Chapter 2.3 --- Computational Complexity --- p.9 / Chapter 2.4 --- Literature Review --- p.12 / Chapter 2.4.1 --- Unrelated Machines Scheduling Environment --- p.12 / Chapter 2.4.2 --- Multiprocessors Scheduling Problem --- p.13 / Chapter 2.4.3 --- Search Algorithms --- p.14 / Chapter 2.4.4 --- Lower Bounds --- p.15 / Chapter 2.5 --- Summary --- p.17 / Chapter 3 --- Fundamentals of Genetic Algorithms --- p.18 / Chapter 3.1 --- Initial Inspiration --- p.18 / Chapter 3.2 --- An Elementary Genetic Algorithm --- p.20 / Chapter 3.2.1 --- "Genes, Chromosomes and Representations" --- p.20 / Chapter 3.2.2 --- Population Pool --- p.22 / Chapter 3.2.3 --- Evaluation Module --- p.22 / Chapter 3.2.4 --- Reproduction Module --- p.22 / Chapter 3.2.5 --- Genetic Operators: Crossover and Mutation --- p.23 / Chapter 3.2.6 --- Parameters --- p.24 / Chapter 3.3 --- A Brief Note to the Background Theory --- p.25 / Chapter 3.4 --- Key Factors for the Success --- p.27 / Chapter 4 --- Tasks Scheduling using Genetic Algorithms --- p.28 / Chapter 4.1 --- Details of Scheduling Problem --- p.28 / Chapter 4.2 --- Chromosome Coding --- p.32 / Chapter 4.2.1 --- Job Priority Sequence --- p.33 / Chapter 4.2.2 --- Engineer Priority Sequence --- p.33 / Chapter 4.2.3 --- An Example Chromosome Interpretation --- p.34 / Chapter 4.3 --- Fitness Evaluation --- p.37 / Chapter 4.4 --- Parent Selection --- p.38 / Chapter 4.5 --- Genetic Operators and Reproduction --- p.40 / Chapter 4.5.1 --- Job Priority Crossover (JOB-CRX) --- p.40 / Chapter 4.5.2 --- Job Priority Mutation (JOB-MUT) --- p.40 / Chapter 4.5.3 --- Engineer Priority Mutation (ENG-MUT) --- p.42 / Chapter 4.5.4 --- Reproduction: New Population --- p.42 / Chapter 4.6 --- Replacement Strategy --- p.43 / Chapter 4.7 --- The Complete Genetic Algorithm --- p.44 / Chapter 5 --- Lower Bound on Optimal Makespan --- p.46 / Chapter 5.1 --- Introduction --- p.46 / Chapter 5.2 --- Definitions and Assumptions --- p.48 / Chapter 5.2.1 --- Task Graph --- p.48 / Chapter 5.2.2 --- Graph Partitioning --- p.49 / Chapter 5.2.3 --- Activity and Load Density --- p.51 / Chapter 5.2.4 --- Assumptions --- p.52 / Chapter 5.3 --- Concepts of Lower Bound on the Minimal Time (LBMT) --- p.53 / Chapter 5.3.1 --- Previous Bound (LBMTF) --- p.53 / Chapter 5.3.2 --- Bound in other form --- p.54 / Chapter 5.3.3 --- Improved Bound (LBMTJR) --- p.56 / Chapter 5.4 --- Lower bound: Task graph reconstruction + LBMTJR --- p.59 / Chapter 5.4.1 --- Problem reduction and Assumptions --- p.60 / Chapter 5.4.2 --- Scenario I --- p.61 / Chapter 5.4.3 --- Scenario II --- p.63 / Chapter 5.4.4 --- An Example --- p.67 / Chapter 6 --- Computational Results and Discussions --- p.73 / Chapter 6.1 --- Parameterization of the GA --- p.73 / Chapter 6.2 --- Computational Results --- p.75 / Chapter 6.3 --- Performance Evaluation --- p.81 / Chapter 6.3.1 --- Solution Quality --- p.81 / Chapter 6.3.2 --- Computational Complexity --- p.86 / Chapter 6.4 --- Effects of Machines Eligibility --- p.88 / Chapter 6.5 --- Future Direction --- p.90 / Chapter 7 --- Conclusion --- p.92 / Chapter A --- Tasks data of problem sets in section 6.2 --- p.94 / Chapter A.l --- Problem 1: 19 tasks --- p.95 / Chapter A.2 --- Problem 2: 21 tasks --- p.97 / Chapter A.3 --- Problem 3: 19 tasks --- p.99 / Chapter A.4 --- Problem 4: 23 tasks --- p.101 / Chapter A.5 --- Problem 5: 27 tasks --- p.104 / Bibliography --- p.107
|
24 |
Reticle floorplanning and voltage island partitioning. / Reticle floorplanning & voltage island partitioningJanuary 2006 (has links)
Ching Lap Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 69-71). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Shuttle Mask --- p.2 / Chapter 1.2 --- Voltage Island --- p.6 / Chapter 1.3 --- Structure of the Thesis --- p.8 / Chapter 2 --- Literature Review on Shuttle Mask Floorplanning --- p.9 / Chapter 2.1 --- Introduction --- p.9 / Chapter 2.1.1 --- Problem formulation --- p.10 / Chapter 2.2 --- Slicing Floorplan --- p.10 / Chapter 2.3 --- General Floorplan --- p.11 / Chapter 2.3.1 --- Conflict Graph Approaches --- p.11 / Chapter 2.3.2 --- Integer Linear Programming Approaches --- p.14 / Chapter 2.4 --- Grid Packing --- p.15 / Chapter 2.4.1 --- "(α,β,γ)-restricted Grid Approach" --- p.15 / Chapter 2.4.2 --- Branch and Bound Searching Approach --- p.17 / Chapter 3 --- Shuttle Mask Floorplanning --- p.18 / Chapter 3.1 --- Problem Description --- p.18 / Chapter 3.2 --- An Overview --- p.20 / Chapter 3.3 --- Modified α-Restricted Grid --- p.21 / Chapter 3.4 --- Branch and Bound Algorithm --- p.23 / Chapter 3.4.1 --- Feasibility Check --- p.25 / Chapter 3.5 --- Dicing Plan --- p.30 / Chapter 3.6 --- Experimental Result --- p.30 / Chapter 4 --- Literature Review on Voltage Island Partitioning --- p.36 / Chapter 4.1 --- Introduction --- p.36 / Chapter 4.1.1 --- Problem Definition --- p.36 / Chapter 4.2 --- Dynamic Programming --- p.38 / Chapter 4.2.1 --- Problem Definition --- p.38 / Chapter 4.2.2 --- Algorithm Overview --- p.38 / Chapter 4.2.3 --- Size Reduction --- p.39 / Chapter 4.2.4 --- Approximate Voltage-Partitioning --- p.40 / Chapter 4.3 --- Quad-tree Approach --- p.41 / Chapter 5 --- Voltage Island Partitioning --- p.44 / Chapter 5.1 --- Introduction --- p.44 / Chapter 5.2 --- Problem Formulation --- p.45 / Chapter 5.3 --- Methodology --- p.46 / Chapter 5.3.1 --- Coarsening and Graph Construction --- p.47 / Chapter 5.3.2 --- Tree Construction --- p.49 / Chapter 5.3.3 --- Optimal Tree Partitioning --- p.50 / Chapter 5.3.4 --- Tree Refinement --- p.52 / Chapter 5.3.5 --- Solution Legalization --- p.53 / Chapter 5.3.6 --- Time Complexity --- p.54 / Chapter 5.4 --- Direct Method --- p.55 / Chapter 5.4.1 --- Dual Grid-partitioning Problem (DGPP) --- p.56 / Chapter 5.4.2 --- Time Complexity --- p.58 / Chapter 5.5 --- Experimental Results --- p.59 / Chapter 6 --- Conclusion --- p.66 / Bibliography --- p.69
|
25 |
Bus-driven floorplanning.January 2005 (has links)
Law Hoi Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 101-106). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- VLSI Design Cycle --- p.2 / Chapter 1.2 --- Physical Design Cycle --- p.6 / Chapter 1.3 --- Floorplanning --- p.10 / Chapter 1.3.1 --- Floorplanning Objectives --- p.11 / Chapter 1.3.2 --- Common Approaches --- p.12 / Chapter 1.3.3 --- Interconnect-Driven Floorplanning --- p.14 / Chapter 1.4 --- Motivations and Contributions --- p.15 / Chapter 1.5 --- Organization of the Thesis --- p.17 / Chapter 2 --- Literature Review on 2D Floorplan Representations --- p.18 / Chapter 2.1 --- Types of Floorplans --- p.18 / Chapter 2.2 --- Floorplan Representations --- p.20 / Chapter 2.2.1 --- Slicing Floorplan --- p.21 / Chapter 2.2.2 --- Non-slicing Floorplan --- p.22 / Chapter 2.2.3 --- Mosaic Floorplan --- p.30 / Chapter 2.3 --- Summary --- p.35 / Chapter 3 --- Literature Review on 3D Floorplan Representations --- p.37 / Chapter 3.1 --- Introduction --- p.37 / Chapter 3.2 --- Problem Formulation --- p.38 / Chapter 3.3 --- Previous Work --- p.38 / Chapter 3.4 --- Summary --- p.42 / Chapter 4 --- Literature Review on Bus-Driven Floorplanning --- p.44 / Chapter 4.1 --- Problem Formulation --- p.44 / Chapter 4.2 --- Previous Work --- p.45 / Chapter 4.2.1 --- Abutment Constraint --- p.45 / Chapter 4.2.2 --- Alignment Constraint --- p.49 / Chapter 4.2.3 --- Bus-Driven Floorplanning --- p.52 / Chapter 4.3 --- Summary --- p.53 / Chapter 5 --- Multi-Bend Bus-Driven Floorplanning --- p.55 / Chapter 5.1 --- Introduction --- p.55 / Chapter 5.2 --- Problem Formulation --- p.56 / Chapter 5.3 --- Methodology --- p.57 / Chapter 5.3.1 --- Shape Validation --- p.58 / Chapter 5.3.2 --- Bus Ordering --- p.65 / Chapter 5.3.3 --- Floorplan Realization --- p.72 / Chapter 5.3.4 --- Simulated Annealing --- p.73 / Chapter 5.3.5 --- Soft Block Adjustment --- p.75 / Chapter 5.4 --- Experimental Results --- p.75 / Chapter 5.5 --- Summary --- p.77 / Chapter 6 --- Bus-Driven Floorplanning for 3D Chips --- p.80 / Chapter 6.1 --- Introduction --- p.80 / Chapter 6.2 --- Problem Formulation --- p.81 / Chapter 6.3 --- The Representation --- p.82 / Chapter 6.3.1 --- Overview --- p.82 / Chapter 6.3.2 --- Review of TCG --- p.83 / Chapter 6.3.3 --- Layered Transitive Closure Graph (LTCG) --- p.84 / Chapter 6.3.4 --- Aligning Blocks --- p.85 / Chapter 6.3.5 --- Solution Perturbation --- p.87 / Chapter 6.4 --- Simulated Annealing --- p.92 / Chapter 6.5 --- Soft Block Adjustment --- p.92 / Chapter 6.6 --- Experimental Results --- p.93 / Chapter 6.7 --- Summary --- p.94 / Chapter 6.8 --- Acknowledgement --- p.95 / Chapter 7 --- Conclusion --- p.99 / Bibliography --- p.101
|
26 |
Efficient alternative wiring techniques and applications.January 2001 (has links)
Sze, Chin Ngai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 80-84) and index. / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iii / Curriculum Vitae --- p.iv / List of Figures --- p.ix / List of Tables --- p.xii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation and Aims --- p.1 / Chapter 1.2 --- Contribution --- p.8 / Chapter 1.3 --- Organization of Dissertation --- p.10 / Chapter 2 --- Definitions and Notations --- p.11 / Chapter 3 --- Literature Review --- p.15 / Chapter 3.1 --- Logic Reconstruction --- p.15 / Chapter 3.1.1 --- SIS: A System for Sequential and Combinational Logic Synthesis --- p.16 / Chapter 3.2 --- ATPG-based Alternative Wiring --- p.17 / Chapter 3.2.1 --- Redundancy Addition and Removal for Logic Optimization --- p.18 / Chapter 3.2.2 --- Perturb and Simplify Logic Optimization --- p.18 / Chapter 3.2.3 --- REWIRE --- p.21 / Chapter 3.2.4 --- Implication-tree Based Alternative Wiring Logic Trans- formation --- p.22 / Chapter 3.3 --- Graph-based Alternative Wiring --- p.24 / Chapter 4 --- Implication Based Alternative Wiring Logic Transformation --- p.25 / Chapter 4.1 --- Source Node Implication --- p.25 / Chapter 4.1.1 --- Introduction --- p.25 / Chapter 4.1.2 --- Implication Relationship and Implication-tree --- p.25 / Chapter 4.1.3 --- Selection of Alternative Wire Based on Implication-tree --- p.29 / Chapter 4.1.4 --- Implication-tree Based Logic Transformation --- p.32 / Chapter 4.2 --- Destination Node Implication --- p.35 / Chapter 4.2.1 --- Introduction --- p.35 / Chapter 4.2.2 --- Destination Node Relationship --- p.35 / Chapter 4.2.3 --- Destination Node Implication-tree --- p.39 / Chapter 4.2.4 --- Selection of Alternative Wire --- p.41 / Chapter 4.3 --- The Algorithm --- p.43 / Chapter 4.3.1 --- IB AW Implementation --- p.43 / Chapter 4.3.2 --- Experimental Results --- p.43 / Chapter 4.4 --- Conclusion --- p.45 / Chapter 5 --- Graph Based Alternative Wiring Logic Transformation --- p.47 / Chapter 5.1 --- Introduction --- p.47 / Chapter 5.2 --- Notations and Definitions --- p.48 / Chapter 5.3 --- Alternative Wire Patterns --- p.50 / Chapter 5.4 --- Construction of Minimal Patterns --- p.54 / Chapter 5.4.1 --- Minimality of Patterns --- p.54 / Chapter 5.4.2 --- Minimal Pattern Formation --- p.56 / Chapter 5.4.3 --- Pattern Extraction --- p.61 / Chapter 5.5 --- Experimental Results --- p.63 / Chapter 5.6 --- Conclusion --- p.63 / Chapter 6 --- Logic Optimization by GBAW --- p.66 / Chapter 6.1 --- Introduction --- p.66 / Chapter 6.2 --- Logic Simplification --- p.67 / Chapter 6.2.1 --- Single-Addition-Multiple-Removal by Pattern Feature . . --- p.67 / Chapter 6.2.2 --- Single-Addition-Multiple-Removal by Combination of Pat- terns --- p.68 / Chapter 6.2.3 --- Single-Addition-Single-Removal --- p.70 / Chapter 6.3 --- Incremental Perturbation Heuristic --- p.71 / Chapter 6.4 --- GBAW Optimization Algorithm --- p.73 / Chapter 6.5 --- Experimental Results --- p.73 / Chapter 6.6 --- Conclusion --- p.76 / Chapter 7 --- Conclusion --- p.78 / Bibliography --- p.80 / Chapter A --- VLSI Design Cycle --- p.85 / Chapter B --- Alternative Wire Patterns in [WLFOO] --- p.87 / Chapter B.1 --- 0-local Pattern --- p.87 / Chapter B.2 --- 1-local Pattern --- p.88 / Chapter B.3 --- 2-local Pattern --- p.89 / Chapter B.4 --- Fanout-reconvergent Pattern --- p.90 / Chapter C --- New Alternative Wire Patterns --- p.91 / Chapter C.1 --- Pattern Cluster C1 --- p.91 / Chapter C.1.1 --- NAND-NAND-AND/NAND;AND/NAND --- p.91 / Chapter C.1.2 --- NOR-NOR-OR/NOR;AND/NAND --- p.92 / Chapter C.1.3 --- AND-NOR-OR/NOR;OR/NOR --- p.95 / Chapter C.1.4 --- OR-NAND-AND/NAND;AND/NAND --- p.95 / Chapter C.2 --- Pattern Cluster C2 --- p.98 / Chapter C.3 --- Pattern Cluster C3 --- p.99 / Chapter C.4 --- Pattern Cluster C4 --- p.104 / Chapter C.5 --- Pattern Cluster C5 --- p.105 / Glossary --- p.106 / Index --- p.108
|
27 |
Voltage island-driven floorplanning.January 2008 (has links)
Ma, Qiang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 78-80). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Floorplanning --- p.2 / Chapter 1.3 --- Motivations --- p.4 / Chapter 1.4 --- Design Implementation of Voltage Islands --- p.5 / Chapter 1.5 --- Problem Formulation --- p.8 / Chapter 1.6 --- Progress on the Problem --- p.10 / Chapter 1.7 --- Contributions --- p.12 / Chapter 1.8 --- Thesis Organization --- p.14 / Chapter 2 --- Literature Review on MSV --- p.15 / Chapter 2.1 --- Introduction --- p.15 / Chapter 2.2 --- MSV at Post-floorplan/Post Placement Stage --- p.16 / Chapter 2.2.1 --- """Post-Placement Voltage Island Generation under Performance Requirement""" --- p.16 / Chapter 2.2.2 --- """Post-Placement Voltage Island Generation""" --- p.18 / Chapter 2.2.3 --- """Timing-Constrained and Voltage-Island-Aware Voltage Assignment""" --- p.19 / Chapter 2.2.4 --- """Voltage Island Generation under Performance Requirement for SoC Designs""" --- p.20 / Chapter 2.2.5 --- """An ILP Algorithm for Post-Floorplanning Voltage-Island Generation Considering Power-Network Planning""" --- p.21 / Chapter 2.3 --- MSV at Floorplan/Placement Stage --- p.22 / Chapter 2.3.1 --- """Architecting Voltage Islands in Core-based System-on-a- Chip Designs""" --- p.22 / Chapter 2.3.2 --- """Voltage Island Aware Floorplanning for Power and Timing Optimization""" --- p.23 / Chapter 2.4 --- Summary --- p.27 / Chapter 3 --- MSV Driven Floorplanning --- p.29 / Chapter 3.1 --- Introduction --- p.29 / Chapter 3.2 --- Problem Formulation --- p.32 / Chapter 3.3 --- Algorithm Overview --- p.33 / Chapter 3.4 --- Optimal Island Partitioning and Voltage Assignment --- p.33 / Chapter 3.4.1 --- Voltage Islands in Non-subtrees --- p.35 / Chapter 3.4.2 --- Proof of Optimality --- p.36 / Chapter 3.4.3 --- Handling Island with Power Down Mode --- p.37 / Chapter 3.4.4 --- Speedup in Implementation and Complexity --- p.38 / Chapter 3.4.5 --- Varying Background Chip-level Voltage --- p.39 / Chapter 3.5 --- Simulated Annealing --- p.39 / Chapter 3.5.1 --- Moves --- p.39 / Chapter 3.5.2 --- Cost Function --- p.40 / Chapter 3.6 --- Experimental Results --- p.40 / Chapter 3.6.1 --- Extension to Minimize Level Shifters --- p.45 / Chapter 3.6.2 --- Extension to Consider Power Network Routing --- p.46 / Chapter 3.7 --- Summary --- p.46 / Chapter 4 --- MSV Driven Floorplanning with Timing --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- Problem Formulation --- p.52 / Chapter 4.3 --- Algorithm Overview --- p.56 / Chapter 4.4 --- Voltage Assignment Problem --- p.56 / Chapter 4.4.1 --- Lagrangian Relaxation --- p.58 / Chapter 4.4.2 --- Transformation into the Primal Minimum Cost Flow Problem --- p.60 / Chapter 4.4.3 --- Cost-Scaling Algorithm --- p.64 / Chapter 4.4.4 --- Solution Transformation --- p.66 / Chapter 4.5 --- Simulated Annealing --- p.69 / Chapter 4.5.1 --- Moves --- p.69 / Chapter 4.5.2 --- Speeding up heuristic --- p.69 / Chapter 4.5.3 --- Cost Function --- p.70 / Chapter 4.5.4 --- Annealing Schedule --- p.71 / Chapter 4.6 --- Experimental Results --- p.71 / Chapter 4.7 --- Summary --- p.72 / Chapter 5 --- Conclusion --- p.76 / Bibliography --- p.80
|
28 |
Fixed-outline bus-driven floorplanning.January 2011 (has links)
Jiang, Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 87-92). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Physical Design --- p.2 / Chapter 1.2 --- Floorplanning --- p.6 / Chapter 1.2.1 --- Floorplanning Objectives --- p.7 / Chapter 1.2.2 --- Common Approaches --- p.8 / Chapter 1.3 --- Motivations and Contributions --- p.14 / Chapter 1.4 --- Organization of the Thesis --- p.15 / Chapter 2 --- Literature Review on BDF --- p.17 / Chapter 2.1 --- Zero-Bend BDF --- p.17 / Chapter 2.1.1 --- BDF Using the Sequence-Pair Representation --- p.17 / Chapter 2.1.2 --- Using B*-Tree and Fast SA --- p.20 / Chapter 2.2 --- Two-Bend BDF --- p.22 / Chapter 2.3 --- TCG-Based Multi-Bend BDF --- p.25 / Chapter 2.3.1 --- Placement Constraints for Bus --- p.26 / Chapter 2.3.2 --- Bus Ordering --- p.28 / Chapter 2.4 --- Bus-Pin-Aware BDF --- p.30 / Chapter 2.5 --- Summary --- p.33 / Chapter 3 --- Fixed-Outline BDF --- p.35 / Chapter 3.1 --- Introduction --- p.35 / Chapter 3.2 --- Problem Formulation --- p.36 / Chapter 3.3 --- The Overview of Our Approach --- p.36 / Chapter 3.4 --- Partitioning --- p.37 / Chapter 3.4.1. --- The Overview of Partitioning --- p.38 / Chapter 3.4.2 --- Building a Hypergraph G --- p.39 / Chapter 3.5 --- Floorplaiining with Bus Routing --- p.43 / Chapter 3.5.1 --- Find Bus Routes --- p.43 / Chapter 3.5.2 --- Realization of Bus Routes --- p.48 / Chapter 3.5.3 --- Details of the Annealing Process --- p.50 / Chapter 3.6 --- Handle Fixed-Outline Constraints --- p.52 / Chapter 3.7 --- Bus Layout --- p.52 / Chapter 3.8 --- Experimental Results --- p.56 / Chapter 3.9 --- Summary --- p.61 / Chapter 4 --- Fixed-Outline BDF with L-shape bus --- p.63 / Chapter 4.1 --- Introduction --- p.63 / Chapter 4.2 --- Problem Formulation --- p.64 / Chapter 4.3 --- Our Approach --- p.65 / Chapter 4.3.1 --- Bus Routability Checking --- p.67 / Chapter 4.3.2 --- Details of the Annealing Process --- p.79 / Chapter 4.4 --- Experimental Results --- p.79 / Chapter 4.5 --- Summary --- p.82 / Chapter 5 --- Conclusion --- p.85 / Bibliography --- p.92
|
29 |
Investigations into methods and analysis of computer aided design of VLSI circuitsNoonan, J. A. (John Anthony) January 1986 (has links) (PDF)
Includes bibliography.
|
30 |
"On stochastic modelling of very large scale integrated circuits : an investigation into the timing behaviour of microelectronic systems" / Gregory Raymond H. BishopBishop, Gregory Raymond H. January 1993 (has links)
Bibliography: leaves 302-320 / xiv, iii, 320 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Faculty of Engineering, 1994?
|
Page generated in 0.1341 seconds