• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 15
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The molecular genetics of endocytosis and growth control in fission yeast

Hume, Alistair N. January 2000 (has links)
No description available.
2

The functions of Ypt2p and Ypt5p in the membrane traffic pathways of Schizosaccharomyces pombe

Robinson, Everton Anthony January 1999 (has links)
No description available.
3

Functions of the Yeast GTPase-Activating Proteins Age1 and Gcs1 for Post-Golgi Vesicular Transport

Benjamin, Jeremy 22 August 2011 (has links)
Organelles within the endomembrane system of all eukaryotic cells exchange membrane lipids and proteins using membrane-bound transport vesicles. This highly conserved vesicular transport process is essential for life and is highly regulated. Much of this regulation is provided by small monomeric GTP-binding proteins such as Arf and Arl that act as molecular switches, cycling between inactive GDP-bound and active GTP-bound states. This cycle of GTP binding and hydrolysis is controlled by guanine-nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), respectively. I have investigated regulatory interactions involving two ArfGAPs, Age1 and Gcs1, involved in post-Golgi vesicular transport in the budding yeast Saccharomyces cerevisiae. In yeast, the Age2 + Gcs1 ArfGAP pair is essential and facilitates post-Golgi transport. I found that overexpression of either the poorly characterized ArfGAP Age1 or the Sfh2 phosphatidylinositol-transfer protein can bypass the requirement for Age2 and Gcs1. Indeed, endogenous Age1 is required for efficient Sfh2-bypass. Moreover, the yeast phospholipase D protein, Spo14, which is activated by Sfh2 and regulates membrane lipid composition, is required for Age1 to effectively alleviate the deleterious effects of defective Age2 + Gcs1 function. My findings suggest that Age1 is regulated by membrane lipid composition and can provide ArfGAP function for post-Golgi transport. Gcs1 is involved in multiple vesicular transport stages, is a dual-specificity GAP for both Arf and Arl1 proteins and, as shown here, also has functions independent of its GAP activity. The absence of Gcs1 causes cold sensitivity for growth and endocytic transport. The cold sensitivity of cells lacking Gcs1 is alleviated by the elimination of either the Arl1 or Ypt6 vesicle-tethering pathway at the trans-Golgi, or by overexpression of Imh1, an effector of the Arl1 pathway. I found elimination of the Ypt6 pathway also prevents Arl1 activation and membrane localization, that Arl1 binding by Imh1 is necessary and sufficient for alleviation, and that the Gcs1 function required for growth and transport in the cold is independent of any GAP activity. My findings suggest that in the absence of this GAP-independent function of Gcs1 the resulting dysregulated Arl1 causes the gcs1? defects through the sequestration of a yet-to-be-determined cellular factor.
4

Membrane Stress and the Role of GYF Domain Proteins /

Georgiev, Alexander, January 2008 (has links)
Diss. (sammanfattning) Stockholm : Stockholms universitet, 2008. / Härtill 4 uppsatser.
5

Solution studies of protein complexes of the endocytic machinery : a dissertation /

Zhuo, Yue. January 2007 (has links)
Dissertation (Ph.D.).--University of Texas Graduate School of Biomedical Sciences at San Antonio, 2007. / Vita. Includes bibliographical references.
6

Atg26 is involved in selective autophagy of the major coat protein Gag of the S. cerevisiae virus L-A

Rube, Peter 25 February 2015 (has links)
No description available.
7

PI(4)-dependent recruitment of clathrin adaptors to the trans-Golgi Network

Wang, Jing. January 2005 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Vita. Bibliography: 106-116.
8

Analýza FAM21, podjednotky WASH komplexu / Analysis of WASH complex component FAM21

Dostál, Vojtěch January 2015 (has links)
The dynamics and function of the actin cytoskeleton depends on polymerization and branching of actin filaments, an event that is stimulated by Arp2/3. Arp2/3-dependent branching is closely linked to the pentameric WASH complex which consists of WASH, strumpellin, SWIP, CCDC53 and FAM21. WASH complex is associated mainly with endosomes. It was traditionally localized to retromer-coated domains of early endosomes which enable sorting and recycling of endocytosed material. However, latest scientific data extend the role of WASH complex to other endosomal or even non-endosomal sites. Of all the subunits of the WASH complex, FAM21 is the most prominent hub for protein-protein interactions, thanks to its long unstructured C-terminal domain. In my diploma thesis FAM21 was localized to early and late endosomes and lysosomes of U2OS human cell line. Dictyostelium discoideum was then used as a model organism to investigate FAM21 protein interactions as well as the proteins associated specifically with the C terminal domain of FAM21. Results of the study shed new light on the complex network of FAM21 interactions and question the long-standing theories on the function of WASH complex in cells. Powered by TCPDF (www.tcpdf.org)
9

Eukaryotické proteiny v patogenní bakterii Legionella pneumophila. / Eukaryotic proteins in the pathogenic bacterium Legionella pneumophila.

Petrů, Markéta January 2013 (has links)
No description available.
10

Functional interactions of HIV-1 GAg with the cellular endocytic pathway /

Valiathan, Rajeshwari Rajan. January 2007 (has links)
Thesis (Ph. D.)--Cornell University, May, 2007. / Vita. Includes bibliographical references.

Page generated in 0.091 seconds