• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 52
  • 13
  • 7
  • 7
  • 4
  • 1
  • Tagged with
  • 156
  • 156
  • 50
  • 50
  • 34
  • 31
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion

Scowen, Ian J., Barnes, S.E., Coates, Philip D., Sibley, M.G., Edwards, Howell G.M., Brown, Elaine C. January 2003 (has links)
No / Spectroscopic techniques have the potential to provide powerful, molecular-specific, non-invasive measurements on polymers during melt processing operations. An exploration is reported of the application and assessment of sensitivity of in-process vibrational spectroscopy¿on-line mid-infrared (MIR), on-line near-infrared (NIR), in-line NIR and in-line Raman¿for monitoring of single screw extrusion of high-density polyethylene and polypropylene blends. These vibrational spectroscopic techniques are compared with novel in-line ultrasound velocity measurements, which were acquired simultaneously, to assess the sensitivity of each method to changes in blend composition and to explore the suitability for their use in real time process monitoring and control.
12

STUDY OF PORE SIZE EFFECT IN CHROMATOGRAPHY BY VIBRATIONAL SPECTROSCOPY AND COLLOIDAL ARRAYS

Huang, Yuan January 2008 (has links)
Current study of separation mechanism in chromatography heavily relies on the measurement of macroscopic properties, such as retention time and peak width. This dissertation describes the vibrational spectroscopy characterization of separation processes.Raman Spectroscopic characterization of a silica-based, strong anion exchange stationary phase in concentrated aqueous solutions is presented. Spectral response of stationary phase quaternary amine is closely related to changes in interaction between counter anions and the amine functional groups as the result of anion hydration. The molecular-level information obtained will provide useful guidance for control of stationary phase selectivity.To study the effects of stationary phase pore size on separations processes, monodisperse silica particles in the sub-100 nm range are prepared and self-assembled to well-ordered, three-dimensional colloidal arrays. A modified LaMer model is proposed and demonstrated for optimization of reaction conditions that lead to uniform and spherical silica particles. This approach greatly reduces the number of training experiments required for optimization. Fast Fourier transformation of colloidal array scanning electron microscopy images indicates closely-packed hexagonal packing patterns.Using these arrays, a novel system for the measurement of molecular diffusion coefficients in nanopores is reported. This system consists of an ordered colloidal array with well-defined pore structure deposited onto an internal reflection element for in-sit collection of kinetic information by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). A mathematical model is established to extract diffusion coefficients from these data. A decrease of approximately eight orders of magnitude in molecular diffusion coefficients is observed for molecular transport in nanopores.Finally, by using this colloidal array-ATR-FTIR system and the corresponding mathematical models that describe absorption in the colloidal array, the distribution in the nanopores of the acetonitrile organic modifier in an aqueous mobile phase solvent system is determined. Based on the results of 50 nm colloidal arrays, pore surface properties have a strong effect on the distribution of organic molecules from bulk solution to the pores.
13

Vibrational and Theoretical Investigations of Molecular Conformations and Intramolecular pi-Type Hydrogen Bonding

Ocola, Esther 2011 December 1900 (has links)
The molecular conformations, potential energy functions and vibrational spectra of several cyclic molecules have been investigated by ab initio and density functional theory calculations and by infrared and Raman spectroscopy. The ab initio computations of 3-cyclopenten-1-ol predict that its lowest energy conformer has a weak pi-type intramolecular hydrogen bonding. The three other conformers lie 301 to 411 cm^-1 higher in energy. The infrared and Raman spectra of this molecule confirm the presence of the four conformers. The energy difference between the two conformers of lowest energy was also determined from the experimental spectroscopic data and was found to be 435 plus/minus 160 cm^-1, in reasonable agreement with the ab initio computations results. Ab initio calculations for cyclopentane and d1, 1,1-d2, 1,1,2,2,3,3-d6, and d10 isotopomers confirm cyclopentane confirmed that has twist and bent structures and that these differ in energy by less than 10 cm^-1. The bending angle is 41.5 degrees and the twisting angle is 43.2 degrees. A complete vibrational assignment for each of the isotopomers was achieved. Ab initio calculations were also carried out for methylcyclopropane, cyclopropylsilane, cylopropylgermane, cyclopropylamine, cyclopropanethiol and cyclopropanol. The structure and the potential energy function for internal rotation was calculated for each and compared to available experimental results determined from infrared and Raman spectra. The calculated barriers to internal rotation agree very well with the experimental data. The structures, relative energies, and frequencies for the lowest energy vibrations of the twisted, bent, and planar forms of cyclohexene and four of its oxygen analogs were calculated and compared to experimental results. The calculated structural data agree very well with that from the microwave work, but the computed barriers are somewhat lower than those based on far-infrared data. 4-Silaspiro-(3,3)-heptane possesses two four-membered rings, each puckered with and angle of 34 degrees. The molecule possesses a two-dimensional ring-puckering potential energy surface with four equivalent minima. The ab initio calculations predict a barrier to planarity of each ring of 582 cm^-1 while the energy of the structure with both rings planar is 1220 cm^-1 higher. The calculated infrared and Raman spectra were compared to those previously published, and the agreement is excellent.
14

Vibrational spectroscopy of an optogenetic rhodopsin: a biophysical study of molecular mechanisms

Ogren, John Isaac 08 April 2016 (has links)
In this dissertation,the membrane protein channelrhodopsin-1 from the green flagellate algae Chlamydomonas agustae (CaChR1) is studied using a variety of spectroscopic techniques developed in the Rothschild Molecular Biophysics Laboratory at Boston University. Over the last decade, channelrhodopsins have proven to be effective optogenetic tools due to their ability to function as light-gated ion channels when expressed in neurons. This ability allows neuroscientists to optically activate an inward directed photocurrent which depolarizes the neuronal membranes and triggers an action potential. Although a variety of channelrhodopsins with different properties have been used, the underlying mechanisms of channelrhodopsin functionality is not yet fully understood. The protein studied here has several advantageous properties compared to the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii including a red shifted visible absorption and slower light inactivation despite having a lower channel current. Elucidating the internal molecular mechanisms underlying the function of CaChR1 provides critical insight into the large class of channelrhodopsin proteins leading toward improved bioengineering for specific optogenetic applications. Here near-IR pre-resonance Raman spectroscopy of CaChR1 provides information on the structure of the unphotolyzed (P0) retinal chromophore, the Schiff base protonation state, and presence of carboxylic acid residues interacting with the Schiff base. Low-temperature FTIR difference spectroscopy combined with site-directed mutagenesis and isotope labeling provide information on changes occurring in the retinal chromophore and protein during the primary phototransition (P0 to P1). This includes information about changes involving protonation state of binding-pocket residues, protein backbone structure, and internal water molecules. Further experiments combining low-temperature and time-resolved FTIR-difference spectroscopy reveal additional information about structural changes during the transition from the unphotolyzed state to the active (open channel) state of the protein (P0 to P2). This work has resulted in an initial model that describes key proton transfer events which occur between the Schiff base and carboxylic acid residues inside the active site of CaChR1. The model raises the possibility that ion channel gating and ion specificity is regulated by the protonation changes of two key residues (Glu 169 and Asp299) located near the Schiff base.
15

Transições de fase induzidas por pressão e tamanho de partícula no ferroelástico Pb8O5(VO4)2 / Phase transitions induced by pressure and particle size in the ferroelástic Pb8O5(VO4)2

Araújo, Bruno Sousa January 2014 (has links)
ARAÚJO, Bruno Sousa. Transições de fase induzidas por pressão e tamanho de partícula no ferroelástico Pb8O5(VO4)2. 2014. 79 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-10-31T19:40:08Z No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-10-31T19:41:19Z (GMT) No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) / Made available in DSpace on 2014-10-31T19:41:19Z (GMT). No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) Previous issue date: 2014 / Ferroelastic compounds are characterized by the possibility to present two or more states of spontaneous strain which could be permuted by application of mechanical stress. Pb8O5(VO4)2 can be classified as belonging to this group. Its crystal structure is not well defined in the literature due to certain adversities found during the data analysis. However, making use of X-ray diffraction in several crystals of this compound we will discuss their probable point groups. It is also known that there is a direct relation between the states of strain and the domains pattern at ambient conditions of temperature and pressure. Several spectroscopic techniques were employed in order to analyze how the crystal structure of these compounds varies according to the dimensions of each crystal. Therefore, we observed the existence of three phases under ambient conditions as well as the possibility of a spontaneous phase transition in crystals of order to units of square micrometers. The structural behavior of Pb8O5(VO4)2 with increasing temperature has been studied in detail by different authors. They reported the existence of two phase transitions on heating, one second-order transition at about 440 K and another first-order around 520 K. The first-order phase transition leads the Pb8O5(VO4)2 crystals of ferroelastic phase to paraelastic phase. However, since ferroelastics crystals show changes of state of spontaneous strain through the application of mechanical stress, we made use of Raman scattering measures with increasing of hydrostatic pressure on samples of Pb8O5(VO4)2 to accompany the spectral behavior of the same during these pressure variations. This way we observed a phenomenon of amorphization of the sample around 11 GPa and obtained strong evidences from three phase transitions at approximately 1, 3.5 and 6 GPa. / Compostos ferroelásticos são caracterizados pela possibilidade de apresentarem dois ou mais estados de deformação ou strain espontâneos devendo haver a possibilidade de permutação entre estes estados através da aplicação de um stress mecânico. O Pb8O5(VO4)2 pode ser classificado como pertencente a este grupo. Sua estrutura cristalina ainda não é bem definida na literatura por conta de certas adversidades encontradas durante as análises das mesmas, no entanto, fazendo uso de difração de raios-X em diversos cristais deste composto discutiremos seus prováveis grupos pontuais. Sabe-se também que há uma relação direta entre os estados de strain e as estruturas de domínios sob condições ambientes de temperatura e pressão. Diversas técnicas espectroscópicas foram empregadas afim de analisar como a estrutura cristalina destes compostos pode variar de acordo com as dimensões de cada cristal. Dessa forma, verificamos a existência de três fases sob condições ambiente, bem como a possibilidade de uma transição de fase espontânea para cristais da ordem de unidades de micrometros quadrados. O comportamento estrutural do Pb8O5(VO4)2 com o aumento de temperatura foi estudado detalhadamente por diversos autores. Eles reportaram a existência de duas transições de fase durante o aquecimento, uma transição de segunda ordem por volta de 440 K e outra de primeira ordem por volta de 520 K. A transição de primeira ordem leva os cristais de Pb8O5(VO4)2 da fase ferroelástica para a fase paraelastica. Contudo, uma vez que cristais ferroelásticos apresentam mudanças de estados de strain espontâneos através da aplicação de stress mecânico, fizemos uso de medidas de espalhamento Raman com aumento de pressão hidrostática em amostras de Pb8O5(VO4)2 para acompanhar o comportamento espectral dos mesmos durante estas variações de pressão. Assim, observamos um fenômeno de amorfização da amostra por volta de 11 GPa e obtivemos fortes indícios de três transições de fase em aproximadamente 1, 3.5 e 6 GPa.
16

Transições de fase induzidas por pressão e tamanho de partícula no ferroelástico Pb8O5(VO4)2 / Phase transitions induced by pressure and particle size in the ferroelástic Pb8O5(VO4)2

Araújo, Bruno Sousa January 2014 (has links)
ARAÚJO, Bruno Sousa. Transições de fase induzidas por pressão e tamanho de partícula no ferroelástico Pb8O5(VO4)2. 2014. 79 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-04-09T19:07:17Z No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-04-10T20:49:59Z (GMT) No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) / Made available in DSpace on 2015-04-10T20:49:59Z (GMT). No. of bitstreams: 1 2014_dis_bsaraujo.pdf: 4719840 bytes, checksum: 34b47793096a5251b04f1f4121ba3485 (MD5) Previous issue date: 2014 / Ferroelastic compounds are characterized by the possibility to present two or more states of spontaneous strain which could be permuted by application of mechanical stress. Pb8O5(VO4)2 can be classified as belonging to this group. Its crystal structure is not well defined in the literature due to certain adversities found during the data analysis. However, making use of X-ray diffraction in several crystals of this compound we will discuss their probable point groups. It is also known that there is a direct relation between the states of strain and the domains pattern at ambient conditions of temperature and pressure. Several spectroscopic techniques were employed in order to analyze how the crystal structure of these compounds varies according to the dimensions of each crystal. Therefore, we observed the existence of three phases under ambient conditions as well as the possibility of a spontaneous phase transition in crystals of order to units of square micrometers. The structural behavior of Pb8O5(VO4)2 with increasing temperature has been studied in detail by different authors. They reported the existence of two phase transitions on heating, one second-order transition at about 440 K and another first-order around 520 K. The first-order phase transition leads the Pb8O5(VO4)2 crystals of ferroelastic phase to paraelastic phase. However, since ferroelastics crystals show changes of state of spontaneous strain through the application of mechanical stress, we made use of Raman scattering measures with increasing of hydrostatic pressure on samples of Pb8O5(VO4)2 to accompany the spectral behavior of the same during these pressure variations. This way we observed a phenomenon of amorphization of the sample around 11 GPa and obtained strong evidences from three phase transitions at approximately 1, 3.5 and 6 GPa. / Compostos ferroelásticos são caracterizados pela possibilidade de apresentarem dois ou mais estados de deformação ou strain espontâneos devendo haver a possibilidade de permutação entre estes estados através da aplicação de um stress mecânico. O Pb8O5(VO4)2 pode ser classificado como pertencente a este grupo. Sua estrutura cristalina ainda não é bem definida na literatura por conta de certas adversidades encontradas durante as análises das mesmas, no entanto, fazendo uso de difração de raios-X em diversos cristais deste composto discutiremos seus prováveis grupos pontuais. Sabe-se também que há uma relação direta entre os estados de strain e as estruturas de domínios sob condições ambientes de temperatura e pressão. Diversas técnicas espectroscópicas foram empregadas afim de analisar como a estrutura cristalina destes compostos pode variar de acordo com as dimensões de cada cristal. Dessa forma, verificamos a existência de três fases sob condições ambiente, bem como a possibilidade de uma transição de fase espontânea para cristais da ordem de unidades de micrometros quadrados. O comportamento estrutural do Pb8O5(VO4)2 com o aumento de temperatura foi estudado detalhadamente por diversos autores. Eles reportaram a existência de duas transições de fase durante o aquecimento, uma transição de segunda ordem por volta de 440 K e outra de primeira ordem por volta de 520 K. A transição de primeira ordem leva os cristais de Pb8O5(VO4)2 da fase ferroelástica para a fase paraelastica. Contudo, uma vez que cristais ferroelásticos apresentam mudanças de estados de strain espontâneos através da aplicação de stress mecânico, fizemos uso de medidas de espalhamento Raman com aumento de pressão hidrostática em amostras de Pb8O5(VO4)2 para acompanhar o comportamento espectral dos mesmos durante estas variações de pressão. Assim, observamos um fenômeno de amorfização da amostra por volta de 11 GPa e obtivemos fortes indícios de três transições de fase em aproximadamente 1, 3.5 e 6 GPa.
17

Verification of Ingredient Labels in High-Risk Oils and Fruit Juices by Using Vibrational Spectroscopy Combined with Pattern Recognition Analysis

Aykas, Didem P. 27 August 2019 (has links)
No description available.
18

METABOLOMICS APPROACH FOR AUTHENTICATION OF PISCO AND DETECTION OF CONTAMINANTS

Menevseoglu, Ahmed January 2019 (has links)
No description available.
19

Trace Analysis of Crystalline Silica Aerosol Using Vibrational Spectroscopy

Wei, Shijun 22 October 2020 (has links)
No description available.
20

Vibrational spectroscopy of diamond films, Langmuir and Langmuir-Blodgett films and aromatic polyethers

Yu, Lisha January 1992 (has links)
No description available.

Page generated in 0.1018 seconds