Spelling suggestions: "subject:"video coequality aprediction"" "subject:"video coequality iprediction""
1 |
Comparison of Video Quality Assessment MethodsJung, Agata January 2017 (has links)
Context: The newest standard in video coding High Efficiency Video Coding (HEVC) should have an appropriate coder to fully use its potential. There are a lot of video quality assessment methods. These methods are necessary to establish the quality of the video. Objectives: This thesis is a comparison of video quality assessment methods. Objective is to find out which objective method is the most similar to the subjective method. Videos used in tests are encoded in the H.265/HEVC standard. Methods: For testing MSE, PSNR, SSIM methods there is special software created in MATLAB. For VQM method downloaded software was used for testing. Results and conclusions: For videos watched on mobile device: PSNR is the most similar to subjective metric. However for videos watched on television screen: VQM is the most similar to subjective metric. Keywords: Video Quality Assessment, Video Quality Prediction, Video Compression, Video Quality Metrics
|
2 |
Video quality prediction for video over wireless access networks (UMTS and WLAN)Khan, Asiya January 2011 (has links)
Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.
|
3 |
Video content-based QoE prediction for HEVC encoded videos delivered over IP networksAnegekuh, Louis January 2015 (has links)
The recently released High Efficiency Video Coding (HEVC) standard, which halves the transmission bandwidth requirement of encoded video for almost the same quality when compared to H.264/AVC, and the availability of increased network bandwidth (e.g. from 2 Mbps for 3G networks to almost 100 Mbps for 4G/LTE) have led to the proliferation of video streaming services. Based on these major innovations, the prevalence and diversity of video application are set to increase over the coming years. However, the popularity and success of current and future video applications will depend on the perceived quality of experience (QoE) of end users. How to measure or predict the QoE of delivered services becomes an important and inevitable task for both service and network providers. Video quality can be measured either subjectively or objectively. Subjective quality measurement is the most reliable method of determining the quality of multimedia applications because of its direct link to users’ experience. However, this approach is time consuming and expensive and hence the need for an objective method that can produce results that are comparable with those of subjective testing. In general, video quality is impacted by impairments caused by the encoder and the transmission network. However, videos encoded and transmitted over an error-prone network have different quality measurements even under the same encoder setting and network quality of service (NQoS). This indicates that, in addition to encoder settings and network impairment, there may be other key parameters that impact video quality. In this project, it is hypothesised that video content type is one of the key parameters that may impact the quality of streamed videos. Based on this assertion, parameters related to video content type are extracted and used to develop a single metric that quantifies the content type of different video sequences. The proposed content type metric is then used together with encoding parameter settings and NQoS to develop content-based video quality models that estimate the quality of different video sequences delivered over IP-based network. This project led to the following main contributions: (1) A new metric for quantifying video content type based on the spatiotemporal features extracted from the encoded bitstream. (2) The development of novel subjective test approach for video streaming services. (3) New content-based video quality prediction models for predicting the QoE of video sequences delivered over IP-based networks. The models have been evaluated using subjective and objective methods.
|
Page generated in 0.1074 seconds