Spelling suggestions: "subject:"ligas dde hormigón"" "subject:"ligas dee hormigón""
1 |
Modelamiento de Vigas de Hormigón con Fibras de AceroGalleguillos Caro, Tito Andreas 18 March 2010 (has links)
Este trabajo valida un modelo de interacción flexión–corte en vigas de hormigón armado con adición de fibras de acero. Estas fibras son incorporadas en la mezcla del hormigón, y su principal ventaja radica en un incremento en la ductilidad de los elementos, lo cual contribuye a disminuir los refuerzos tradicionales de barras de acero (longitudinales y estribos).
La interacción entre flexión y corte se analizó mediante el uso de elementos tipo panel de hormigón armado en la modelación, es decir, elementos con comportamiento biaxial, mientras que el efecto de las fibras fue incluido en el análisis a través de las leyes constitutivas del material (curvas tensión–deformación). De esta manera, se caracterizó el comportamiento de los materiales a utilizar, adaptando modelos de hormigón tradicional a modelos de hormigón con fibras. Definidas las leyes constitutivas de los materiales, éstas fueron incorporadas al modelo en estudio, obteniéndose respuestas analíticas para ser comparadas con resultados experimentales de ensayos realizados en la Universidad de Oklahoma, con el fin de verificar el modelo de interacción y el efecto de las fibras de acero en las vigas.
Dos hipótesis fundamentales se utilizaron en el modelo: (i) resultante nula de las tensiones transversales e (ii) imposición de un perfil de deformaciones transversales que fue calibrado para muros cortos. En general, el modelo de tensiones nulas resultó en buenas predicciones de capacidad y deformación en vigas más esbeltas, mientras que la imposición de deformaciones transversales resultó mejor en el caso de la viga más corta con falla de corte. Al acotar las deformaciones unitarias al momento de fluencia del refuerzo de flexión, este último modelo mejoró su respuesta en términos de ductilidad para todas la vigas.
|
2 |
Modelamiento de Vigas de Hormigón con Refuerzo de Acero y Cables Pretensados Variando la Relación de Aspecto de CorteGotschlich Martínez, Nicolás Jesús January 2011 (has links)
Este trabajo valida un modelo de interacción flexión-corte en vigas de hormigón autocompactante liviano, con acero longitudinal de refuerzo y cables pretensados, para tres relaciones de aspecto de corte. Adicionalmente, se ha estudiado la capacidad predicha por diferentes implementaciones del modelo de interacción sobre vigas de hormigón armado tradicional, utilizando distintas relaciones de aspecto de corte.
La interacción entre esfuerzos de flexión y corte se realiza mediante elementos con comportamiento de panel (biaxial), mientras que las cargas de pretensado se incluyen como solicitaciones externas. Para caracterizar los materiales modelados, se definen las leyes constitutivas de estos en base a recomendaciones y expresiones de la literatura disponible al respecto. Las leyes definidas se incorporan al modelo de interacción, obteniéndose respuestas analíticas que se comparan con resultados experimentales realizados en la Universidad de Oklahoma, en el caso de las vigas de hormigón autocompactante liviano, y ensayos realizados por Kani (1979) en el caso de vigas de hormigón armado tradicional.
Las implementaciones del modelo de interacción: (i) resultante de tensiones nulas en la sección transversal y (ii) deformaciones transversales basadas en un perfil calibrado para muros cortos, son incluidas en la modelación. Se presenta una hipótesis adicional al calcular el perfil de deformaciones transversales: (ii.1) se descuentan las deformaciones por flexión y (ii.2) estas deformaciones no son descontadas.
Al analizar vigas de hormigón armado tradicional para un amplio rango de relaciones de aspecto de corte, el modelo de tensiones nulas posee buenas predicciones de capacidad para relaciones altas; mientras que, en general, el modelo con un perfil de deformaciones calibrado posee mejores predicciones para relaciones bajas. Se presentan adicionalmente un modelo de flexión, que no presenta grandes diferencias con los modelos de interacción en capacidad, pero no permite reflejar la fragilidad de las vigas estudiadas (todas de falla por corte).
En el caso de las vigas de hormigón autocompactante liviano, el modelo con deformaciones calibradas que descuenta las deformaciones por flexión posee mejores predicciones de capacidad y deformación de las vigas estudiadas, entregando los demás modelos capacidades similares, pero deformaciones que sobre estiman la obtenida experimentalmente.
|
3 |
Analysis of beams with transverse opening using a shear-flexure interaction model and validation with experimental dataBarra Cortés, Maximiliano Hernán January 2015 (has links)
Ingeniero Civil / Un modelo que combina las respuestas de corte y flexión fue desarrollado por Massone et al. (2006). Este modelo ha sido validado para muros esbeltos y muros cortos (Massone et al., 2009). El modelo fue adaptado para su uso en vigas simplemente apoyadas con ciertas particularidades, como fibras de acero en la mezcla de hormigón o la utilización de hormigón de auto consolidación (Galleguillos, 2010 y Gotschlich, 2011 respectivamente).
El modelo de interacción corte-flexión fue adaptado para simular vigas de hormigón armado en cantiléver con una abertura rectangular en la dirección transversal horizontal al centro de su luz. El objetivo era el de validar el modelo para su uso en elementos de esta naturaleza, que son comunes en edificios modernos, en donde se busca aprovechar la altura completa de pisos. Las aberturas se utilizan para el paso de conductos y tuberías.
Los resultados obtenidos mediante el modelo de interacción fueron comparados con resultados experimentales, descritos por Lemnitzer et al. (2013). La respuesta global predicha se acerca considerablemente a la respuesta experimental, mostrando curvas de carga desplazamiento razonables. Las limitaciones del modelo fueron evidentes al estimar la zona de falla del Espécimen 1, que presenta daño en su abertura. Otras discrepancias son la alta ductilidad que entrega el modelo analítico, retrasando la degradación por la contribución de corte, así como la alta rigidez inicial que presentan las simulaciones. La acumulación de daño por corte en ciertas zonas fue bien capturada mediante el modelo para los tres especímenes que fallaron en su interfaz con el bloque de reacción, pero no así la acumulación de daño por flexión. La máxima capacidad de los especímenes fue bien predicha, con discrepancias iguales o menores a un 10%.
Una variación en la discretización inicial de las vigas junto a una baja en las resistencias de los elementos en el modelo permite inducir la falla en la zona de la abertura. Esta última discretización es recomendada para estudios a futuro.
|
4 |
Validación del modelo tipo panel modificado en la estimación analítica de la capacidad al corte de vigas altas de hormigón armadoMejías Orellana, Guillermo Esteban January 2014 (has links)
Ingeniero Civil / Los elementos estructurales como vigas altas, vigas en voladizo, muros cortos e intersecciones vigas columnas son muy comunes en diferentes tipos de obras como puentes, edificios habitacionales y edificios de oficinas. En particular las vigas de hormigón armado son uno de los elementos estructurales más utilizados en los diferentes proyectos civiles que existen.
Las vigas altas o vigas cortas (deep beams), son aquellas que tienen una relación de aspecto entre su largo y su altura menor a cuatro. Estos elementos no esbeltos son utilizados fundamentalmente como conectores o dinteles entre muros. La falla de éste tipo de vigas está gobernada por el esfuerzo de corte y su predicción es más difícil que las fallas de flexión. Actualmente las normas se enfocan en las vigas largas, donde predomina la falla por flexión, siendo de suma importancia estimar la capacidad de las vigas de menor longitud para entender el comportamiento sísmico de las estructuras. Es por esto que la presente memoria tiene como objetivo aplicar un modelo teórico que permita predecir la capacidad al corte en vigas altas de hormigón armado.
El modelo tipo panel implementado para predecir la capacidad al corte de las vigas altas de hormigón armado asume que la dirección principal de tensiones del elemento es igual a la dirección principal de deformaciones y considera un solo elemento que representa el estado de deformaciones y tensiones promedio de la viga. Respecto a los materiales, la ley constitutiva del hormigón tiene un comportamiento biaxial al considerar la degradación de la capacidad de compresión debido a las fisuras provocadas por la tracción en la dirección perpendicular y el acero sigue un comportamiento uniaxial. Además supone un ángulo de falla que puede ser fijo o variable, en particular en esta memoria, se utilizan los modelos de ángulo fijo (ángulo en función de la relación de aspecto y niveles de carga axial) por ser aquellos que entregaron mejores resultados en el análisis de muros cortos (Ulloa L. 2013, basado en el modelo de Kaseem).
Para analizar el comportamiento del modelo teórico se acoplaron ensayos existentes en la literatura, generando una base de datos con 182 ensayos. Estas vigas ensayadas fueron sometidas a cargas verticales en distintas disposiciones, fundamentalmente pares de cargas puntuales a iguales distancias desde los bordes. En los ensayos se varía la armadura al corte o estribos (transversal), la cuantía de armadura longitudinal (horizontal), las dimensiones de la viga, la distancia al borde de la armadura y las propiedades del material. La comparación entre el modelo tipo panel modificado (Ulloa L, 2013) y los resultados empíricos dio valores promedios para la estimación de la capacidad de 0.87 para mod. α_((σ_r=f_ct ) ) σ_L=N/A , 0.91 para mod. α_((σ_r=〖0.5f〗_ct ) ) σ_L=N/A y 0.92 para mod. α_((σ_r=f_ut=0) ) y σ_L=N/A. Las dispersiones fueron 0.27, 0.28 y 0.28. Además el modelo alcanza un promedio del 98% de la deformación por corte alcanzada en los ensayos. En general, se aprecia que cuando el ángulo se fija a mayores tensiones de tracción, los resultados son mejores, para el modelo original y para las distintas modificaciones realizadas.
|
5 |
Optimización de edificaciones empleando vigas de concreto de sección huecaBriones Samame, Cesar Danny Harold January 2020 (has links)
Según la hipótesis de Charles S. Whitney, los esfuerzos a flexión soportados por el concreto, solo serán efectivos en el extremo superior de la viga, ya que el extremo inferior se considera agrietado. Se diseñaron tres edificaciones con vigas de sección convencional, vigas de sección hueca rectangular y vigas huecas circulares; para lograr las vigas de sección hueca se ha empleado materiales que servirán como encofrado perdido, estos materiales son: Poliestireno Expandido (EPS) y tubos de PVC, respectivamente. La presente tesis tuvo como objetivo general determinar la influencia del empleo de vigas de concreto de sección hueca en edificios que se desarrollan en la provincia de Chiclayo. De acuerdo a los resultados obtenidos, el empleo de vigas huecas rectangulares (V.HR) mejora el comportamiento sísmico de las estructuras de manera más eficaz que las vigas de sección hueca circular (V.HC), y estas a su vez tienen mejor comportamiento comparadas con las vigas de sección llena (V.LL). Las vigas huecas disminuyen tanto en peso sísmico, desplazamientos laterales, fuerzas sísmicas y contaminación ambiental; sin embargo, económicamente implicarán un aumento en la especialidad de estructuras de 1.08% para vigas huecas rectangulares (V.HR) y 1.91% para vigas huecas circulares (V.HC). En donde la variación de precios corresponde principalmente al empleo de encofrados perdidos. Además, se observó que el núcleo interior de vigas de concreto no contribuye substancialmente a la resistencia a la torsión de la pieza después de producido el agrietamiento.
|
6 |
Integration of Self-Healing Functionalities in Structural Design for Serviceability of Concrete Structures under Marine ExposureDabral, Kiran 17 February 2025 (has links)
[ES] El hormigón es el material estructural más empleado en la construcción a nivel mundial debido a su resiliencia, versatilidad y rentabilidad. Sin embargo, su baja resistencia a la tracción provoca frecuentemente fisuras en servicio, que permiten la penetración de sustancias nocivas del entorno. Esto genera pérdida de integridad estructural y una reducción de la vida útil. El deterioro suele originarse por la corrosión de las armaduras embebidas, lo que conlleva una disminución de la sección del refuerzo, pérdida de adherencia y desprendimiento del recubrimiento de hormigón, resultando en deterioro prematuro y fallos estructurales.
El autosanado del hormigón ha sido ampliamente investigado en las últimas décadas. Aunque el hormigón tiene una capacidad natural para reparar pequeñas fisuras (autosanado autógeno), esta puede mejorarse añadiendo agentes de autosanado capaces de cerrar fisuras mayores. Entre los agentes más estudiados se incluyen bacterias, aditivos cristalinos, polímeros superabsorbentes y sistemas de encapsulación como microcápsulas, macrocápsulas y redes vasculares. Algunos de estos sistemas están disponibles comercialmente, mientras que otros están en desarrollo. Los mecanismos principales de autosanado se basan en la producción de carbonato de calcio y en el transporte de compuestos reparadores a las fisuras.
Aunque numerosos estudios han evaluado estos agentes a escala de laboratorio, su efectividad en elementos estructurales a escala industrial sigue siendo limitada. La transición a estructuras reales es crucial, ya que estas enfrentan condiciones más complejas de carga y exposición ambiental.
Este estudio busca cerrar estas brechas abordando los siguientes objetivos:
1. Demostrar la escalabilidad del hormigón autosanado desde muestras de laboratorio hasta vigas a escala industrial.
2. Analizar la fisuración en elementos estructurales con autosanado bajo cargas según normas de diseño.
3. Evaluar la penetración de cloruros y la protección frente a la corrosión en elementos fisurados.
4. Modificar los modelos de vida útil para hormigones fisurados con funcionalidad autosanadora.
Se investigaron tres tipos de hormigón: convencional (~50 MPa), de alta resistencia (~70 MPa) y de ultra-alta resistencia reforzado con fibras (~145 MPa). Se añadieron agentes autosanadores (bacterias encapsuladas y aditivos cristalinos) en vigas de 4 metros de longitud, diseñadas con fisuras controladas de 50 µm, 100 µm y 300 µm, refuerzos de 16 mm y recubrimientos de 20 mm y 30 mm.
El análisis de fisuración, realizado según códigos como Eurocódigo, ACI y el Modelo 2010, mostró que los agentes de autosanado aumentaron ligeramente la resistencia a compresión y redujeron marginalmente la resistencia a flexión, sin cambios significativos en el tamaño, patrón u orientación de las fisuras. Los modelos teóricos no replicaron de manera precisa los escenarios de fisuración observados experimentalmente, incluso tras ajustar los cálculos para incluir efectos de rigidez por tensión y endurecimiento por fibras.
Se evaluó la corrosión de las armaduras mediante potencial de media celda (HCP), mostrando que los niveles de fisuración aumentaron los valores negativos de HCP durante los primeros seis meses, aunque esta influencia disminuyó con el tiempo.
En entornos simulados marinos, los agentes autosanadores mejoraron la resistencia del hormigón a la penetración de cloruros. Aunque la fisuración amplificó el ingreso de cloruros, no se encontró una relación clara entre las características de las fisuras y la intensidad de la penetración. Si bien los agentes de autosanado no afectaron significativamente el comportamiento estructural, sí mejoraron notablemente la durabilidad frente a la corrosión, extendiendo la vida útil de las estructuras. / [CA] El formigó és el material estructural més utilitzat a escala mundial gràcies a la seva versatilitat, resistència ambiental i rendiment. Tot i així, la seva baixa resistència a la tracció pot provocar esquerdes en condicions de servei, permetent la penetració de substàncies nocives que causen corrosió a les armadures i redueixen la vida útil de les estructures. La corrosió genera efectes com la disminució de la secció de les barres de reforç, pèrdua d'adherència i deteriorament estructural.
Per abordar aquests problemes, s'han investigat les capacitats d'autosanació del formigó, que inclouen l'ús d'agents externs com bacteris, additius cristal·lins, polímers i encapsulaments (microcàpsules, macrocàpsules, xarxes vasculars). Tot i l'avenç en laboratoris, hi ha poca informació sobre l'eficàcia d'aquests agents en elements a escala industrial, especialment en estructures sotmeses a càrregues complexes i entorns agressius.
Aquest estudi té com a objectius principals:
1. Validar l'escalabilitat del formigó autosanant des de mostres de laboratori fins a vigues industrials.
2. Analitzar el comportament de les esquerdes sota diverses càrregues.
3. Avaluar la protecció contra la corrosió en vigues amb funcionalitat d'autoreparació.
4. Refinar els models de predicció de vida útil per a elements danyats amb capacitat d'autosanació.
S'han provat tres tipus de formigons (convencional, alta resistència i ultra alta resistència amb fibres) incorporant agents autosanadors (bacteris i additiu cristal·lí) en vigues de 4 metres sotmeses a fissures controlades (50 µm, 100 µm i 300 µm). Les proves inclouen l'avaluació de fisures mitjançant codis de disseny com l'Eurocodi i el Model Code 2010, proves de durabilitat com la penetració de clorurs, i l'anàlisi de la corrosió de les armadures.
Els resultats mostren que els agents autosanadors milloren la resistència a la compressió i redueixen lleugerament la resistència a la flexió, però tenen un impacte mínim en la resistència estructural general. Els codis de disseny actuals no prediuen adequadament el comportament de les esquerdes, especialment en formigons d'ultra alta resistència amb fibres, on es recomana considerar la rigidesa a tracció i l'efecte de les fibres per millorar les prediccions teòriques.
L'anàlisi no destructiva de la corrosió revela que el tipus de formigó i agent autosanador influeixen en la progressió de la corrosió. Els valors de potencial més negatius es correlacionen amb un major risc de corrosió inicialment, especialment en formigons d'alta resistència, tot i que aquesta tendència disminueix amb el temps. Finalment, els agents autosanadors redueixen significativament la penetració de clorurs en ambients agressius, millorant la durabilitat de les estructures fissurades, però sense alterar de manera significativa l'estructura global del formigó. / [EN] Concrete is the most widely used structural material globally due to its resilience, versatility, and cost-effectiveness. However, its low tensile strength often leads to cracks during service, which allow harmful substances to penetrate, causing structural integrity loss and reduced service life. These issues are primarily due to the corrosion of embedded reinforcement, leading to reduced rebar cross-sections, bonding loss, and spalling of the concrete cover, ultimately resulting in premature deterioration and potential structural failure.
To address these issues, self-healing functionalities in concrete have been extensively studied. Concrete naturally exhibits autogenous healing, which can be enhanced by incorporating external self-healing agents to repair larger cracks. Agents such as bacteria, crystalline admixtures, superabsorbent polymers, and encapsulations (e.g., microcapsules, macrocapsules, vascular networks) have been explored. While some are commercially available, others are still under development. These agents primarily work by precipitating calcium carbonate or transporting repair compounds to cracks.
Most studies on self-healing concrete have focused on laboratory-scale evaluations, with limited research on full-scale industrial components. Scaling up this technology is critical because real-world structures face complex stresses, loading conditions, and aggressive environments, which laboratory conditions cannot fully replicate.
This study addresses knowledge gaps by:
1. Demonstrating scalability from lab-scale specimens to industrial-scale beams.
2. Analyzing cracking in structural elements with self-healing capabilities under different loading conditions.
3. Assessing chloride ingress and rebar corrosion protection in cracked self-healing concrete.
4. Refining service life modeling for cracked concrete with self-healing functionality.
Three types of concrete were investigated: Ordinary Concrete (~50 MPa), High Strength Concrete (~70 MPa), and Ultra High-Performance Fiber Reinforced Concrete (~145 MPa). Two self-healing agents (encapsulated bacteria and crystalline admixture) were incorporated into the concrete mix. Four-meter-long beams were designed with 16 mm diameter reinforcement bars, 20 mm and 30 mm concrete covers, and cracked at levels of 50 µm, 100 µm, and 300 µm.
Cracking behavior was analyzed using design codes such as Eurocode, ACI, and Model Code 2010. Durability was tested through accelerated chloride migration and diffusion tests on cracked and uncracked samples, with results used to evaluate service life in simulated marine environments.
Key findings include:
- Self-healing agents marginally increased compressive strength and slightly reduced flexural strength but had minimal impact on cracking size, pattern, and orientation.
- Design codes, based on simplified models, inadequately predicted complex cracking scenarios. Adjustments accounting for tension stiffening and fiber effects in ultra-high-performance concrete led to significant deviations between theoretical and experimental results.
- Non-destructive corrosion analysis revealed that corrosion progression depended on concrete quality and self-healing agent type. Cracks correlated with more negative half-cell potential (HCP) values during initial exposure, although this effect diminished over time.
- Self-healing agents significantly improved resistance to chloride ingress, particularly in cracked specimens, without notably affecting structural cracking behavior.
Overall, the study highlights the potential of self-healing agents to enhance durability by mitigating chloride ingress and extending service life, while structural response remains largely unchanged. This research provides critical insights into the application of self-healing technologies in industrial-scale concrete structures. / Dabral, K. (2025). Integration of Self-Healing Functionalities in Structural Design for Serviceability of Concrete Structures under Marine Exposure [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/214447
|
Page generated in 0.0652 seconds