Spelling suggestions: "subject:"vinyl chloride -- biodegradation"" "subject:"vinyl chloride -- diodegradation""
1 |
Aerobic degradation of chlorinated ethenes by Mycobacterium strain JS60 in the presence of organic acidsBlatchford, Christina 22 September 2005 (has links)
This study evaluated the potential of the aerobic Mycobacterium strain JS6O to
grow on a variety of organic acid substrates, and the possible effects an organic acid
would have on the degradation rate of vinyl chloride (VC). A series of batch growth
tests were designed to determine the time it took to consume the substrate and the overall
increase in biomass. Strain JS6O was found capable of growth on acetate, propionate,
and butyrate, but could not grow on formate or lactate. Acetate was chosen for further
study because strain JS6O consumed acetate the most rapidly of all the organic acids
tested, and acetate is a common product of fermentation reactions in the subsurface.
Strain JS6O was confirmed to grow on both ethylene and vinyl chloride as the sole
carbon and energy source. Comparatively, strain JS6O's rate of growth on VC is much
slower than that of ethylene. With acetate as an augmenting growth substrate, ethylene
and VC utilization rates increased by 30% and 48%, respectively. Since acetate and VC
are often found together in contaminated chlorinated ethene plumes, this makes a strong
case for natural attenuation of VC by strain JS6O.
A series of kinetic tests were implemented to determine the K[subscript s] and k[subscript max] of strain
JS6O for ethylene, VC, and c-DCE. The K[subscript s] and k[subscript max] for ethylene determined through
NLSR methods was similar to the values published in Coleman et al. (2002), supporting
the maintenance of a pure culture throughout the experimental work.
When strain JS6O was exposed to the isomers of DCE (trans-1,2-dichloroethylene
(t-DCE), cis-1,2-dichloroethylene (c-DCE), and 1,1-dichloroethylene (1,1-DCE)) the
cells were unable to grow on these compounds. However, when growing on acetate,
strain JS6O cometabolized c-DCE and t-DCE, but not 1,1-DCE, with c-DCE transformed
more rapidly than t-DCE. Transformation of c-DCE was also observed with growth on
VC and ethylene. The presence of c-DCE was shown to partially inhibit VC degradation,
but had no effect on ethylene degradation. The cometabolism results with acetate further
indicate that strain JS6O is a good candidate for natural attenuation of multiple
chlorinated ethenes in the subsurface. / Graduation date: 2006
|
2 |
Inhibition, kinetic and modeling studies of acetylene and 1-chloro-1-fluoroethene on reductive dechlorination of TCE and vinyl chloridePon, George 17 December 2003 (has links)
Laboratory and modeling studies were performed with a mixed-anaerobic-culture
obtained from the Evanite site in Corvallis, Oregon. The culture completely
transforms trichloroethene (TCE) to cis-dichloroethene (c-DCE), vinyl chloride
(VC), and finally to ethene. Acetylene inhibition studies were used to examine the
culture's microbial activities. Kinetic studies determined the half-saturated
constant (K[subscript s]), the maximum utilization rate (k[subscript max]X), and inhibition constants (K[subscript I]).
The kinetic constants were used to model the results of inhibition studies using
competitive and uncompetitive inhibition models.
Acetylene was found to function as a reversible inhibitor and was used to
probe the activities of reductive dechlorination. Various acetylene concentrations
were used to differentiate microbial processes, including methanogenesis,
acetogenesis, and halorespiration. Acetylene concentrations of 48, 192, and 12
��M, respectively, were required to achieve 90% inhibition in the rates of
methanogenesis, TCE and VC transformation. H���-dependent acetate production
was not inhibited by acetylene.
K[subscript s] values for TCE and VC were 12 ��M and 63 ��M, respectively. Model
fitting of acetylene inhibition constants (K[subscript IC]) for TCE and VC transformations
yielded the same value (0.4 ��M) for a competitive inhibition model. However, for
uncompetitive inhibition the estimated K[subscript IU] for TCE to c-DCE, TCE to 1,1-DCE
and VC to ethene were 13.3, 14.1 and 2.2 ��M, respectively. Competitive and
uncompetitive inhibition models simulated experimental data equally well for
results obtained at high TCE and VC concentrations. The models were further
verified to fit transient data of acetylene inhibition at lower TCE and VC
concentrations, and competitive inhibition resulted in a better fit to the
experimental data.
1-chloro-1-fluoroethene (1,1-CFE) was found to track the rate of VC
transformation well, since VC and 1,1-CFE had similar maximum transformation
rates and K[subscript s] values. A competitive inhibition model with the measured K[subscript s] values,
63 and 87 ��M. was used to predict the rates of VC and 1,1-CFE transformation,
respectively. The similar rates and results of acetylene and compound inhibition
studies indicated VC and 1,1-CFE were transformed by the same enzyme. 1,1-CFE transformation by three different cultures, clearly demonstrate that 1,1-CFE
was an excellent surrogate to track rates of VC transformation. / Graduation date: 2004
|
Page generated in 0.1037 seconds