• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding Non-viral Nucleic Acid Delivery Vehicles with Different Charge Centers and Degradation Profiles

Lu, Hao 07 June 2011 (has links)
Different structures of non-viral cationic polymer delivery vehicles, including charge center type, molecular weight and degradability, could significantly affect toxicity, release of nucleic acid and transfection efficiency. Poly(glycoamidoamine)s (PGAAs) contained different carbohydrate and secondary amine moieties and showed high transfection efficiency to different cell lines in a nontoxic manner. The "proton sponge hypothesis" has attempted to relate the buffering capacity to endosomal release of polyethylenimine (PEI) based polyplexes, which could contribute to high transfection efficiency. Secondary amine structures rendered PGAAs buffering capacity around physiological pH. To test the feasibility of the mechanism for PGAAs, new no buffering capacity guanidine or methylguanidine containing poly(glycoamidoguanidine)s (PGAGs) were synthesized. PGAGs formed stable polyplexes with pDNA from N/P (# secondary amine or guanidine group on polymer backbone / # phosphate group on pDNA backbone) ratio 3. PGAG based polyplexes expressed low cytotoxicity and were internalized by 90% of cells at N/P 25. Furthermore, two PGAG based polyplexes showed higher transfection efficiency from N/P 5 to 30 than their PGAA based analogs. These data suggested the low transfection could be due to the difficulties to release pDNA from polyplexes; also, the "proton sponge theory" could not explain the higher transfection efficiency by some PGAGs. Degradation of delivery vehicles could potentially release pDNA in cells and increase transfection efficiency. PGAAs degraded rapidly at physiological conditions and the proposed mechanism was amide hydrolysis. Typically, amide groups are stable and hydrolyze slowly in absence of enzyme. Different models mimicking PGAAs were synthesized to study the fast hydrolysis. Amide groups showed asymmetric hydrolysis. Different hydrolysis behaviors suggested neighboring group participation of two terminal groups to induce rapid amide hydrolysis. These new models could potentially be used to design new polymer delivery vehicles with various degradation profiles. / Master of Science
2

The demonstration of lumpy skin disease virus in semen of experimentally infected bulls using different diagnostic techniques

Bagla, Victor Patrick 27 May 2008 (has links)
Lumpy skin disease virus (LSDV), a poxvirus that belongs to the genus Capripoxvirus is an important pathogen that can be shed in the semen of infected bulls. The screening of semen for infectious virus prior to artificial insemination requires a sensitive diagnostic method. The isolation of the virus on cell cultures and/or the use of polymerase chain reaction (PCR) are sensitive diagnostic tests which can be used to screen semen for LSD viral DNA prior to artificial insemination. Although cell culture is a sensitive method and detects infectious virus, its use has major limitations due to the toxic effect of semen on the cells. This study was therefore aimed at finding a method that decreases the toxic effect of semen on cell culture and enhances LSDV isolation. Secondly, the efficiency of this method in enhancing the isolation of LSDV in field samples was tested. In order to eliminate the toxic effect of semen on cell culture, a pilot study was conducted in which semen samples from LSDV sero-negative bulls were collected and infected with a field isolate of LSDV, strain 248/93 with a titre of 6.5 log TCID50. The semen samples were subjected to one of four different methods, viz centrifugation, serial dilution, filtration and chemical treatment with kaolin. The centrifugation, serial dilution, and filtration methods were supplemented with additional amounts of gentamycin. The toxic effects of semen on cell culture were completely eliminated when supernatants of semen samples, centrifuged at 2000 rpm for 1, 3 and 5 mins and serial diluted was used to inoculate confluent monolayers of bovine dermis cells. Semen diluted in MEM with or without additional antibiotics was the most sensitive method of demonstrating virus at higher dilutions, followed by pellets of samples centrifuged for 1 and 3 minutes. The toxicity recorded when the pellet fraction of semen samples were centrifuged for 5 mins at 2000 rpm was comparable to results obtained from serially diluted samples supplemented with gentamycin. The use of filtration and kaolin treatment of semen samples could not remove the toxic effect of semen on cells. To evaluate the presence of LSDV in semen of experimentally infected bulls, six seronegative post-pubertal bulls housed in an insect proof facility were infected with LSDV via the intravenous route. The experimentally infected bulls were monitored for clinical sign of the disease. Two bulls showed severe, two a mild and two an inapparent infection. Blood samples were collected for virus isolation and semen samples for virus isolation and PCR. Vesicular fluid and preputial washes were also investigated for the presence of LSD viral nucleic acid using PCR. The infectious titre of the virus shed in semen of these bulls was also calculated. The incubation period in infected bulls varied from 7 to 14 days. The length of viraemia varied between groups and did not correlate with the severity of clinical disease. The virus was isolated from blood samples of bulls in the severely infected group on several occasions. Bulls in the mildly infected group had the lowest rate of isolated virus when compared to those with inapparent infection. The use of supernatants of centrifuged serial diluted semen samples, as shown in the pilot study, have considerably reduced the toxic effect of semen on cell culture. This method was used to test field samples for its sensitivity to isolated LSDV in semen of experimentally infected bulls with PCR as a gold standard. In all the semen samples tested using supernatants of semen samples LSDV was isolated in 53.1% of the samples on cell culture while in the serial diluted samples, only 28.1% of samples were positive with a median time of detection on cell culture of 4 and 8 days, respectively. The use of the supernatant fraction was able to detect infectious LSDV in semen samples for prolonged periods with reduced time of development of cytopathic effect, than previously reported. In order to compare the sensitivity of PCR and virus isolation, PCR positive and a few negative samples were subjected to virus isolation using the centrifugation method developed in the pilot study. The PCR was able to detect LSD viral nucleic acids in some semen samples even when virus could not be isolated on cell culture. The PCR was also able to detect viral nucleic acid in vesicular fluid and preputial washes of infected bulls. The titre of the virus shed in the semen at a certain stage of the infection was calculated to be 3 log TCID50. In conclusion, this study provides evidence of a complete reduction of the toxic effect of semen on cell culture and increase chances of LSDV isolation with reduced detection time when semen samples are processed using the centrifugation method as described in the pilot study. Furthermore, it showed PCR was more sensitive than virus isolation in the detection of LSD viral nucleic acid in semen samples and can be used for routine diagnosis. However, virus isolation must be used when the infective nature of virus shed in semen is desirable. This study provides the first evidence of the shedding of LSDV nucleic acid in vesicular fluid and preputial washes of experimentally infected bulls. It also represents the first report that a considerable amount of LSDV is shed in semen of experimentally infected bulls, which may be infective at certain stages of clinical disease. Lumpy skin disease virus (LSDV), a poxvirus that belongs to the genus Capripoxvirus is an important pathogen that can be shed in the semen of infected bulls. The screening of semen for infectious virus prior to artificial insemination requires a sensitive diagnostic method. The isolation of the virus on cell cultures and/or the use of polymerase chain reaction (PCR) are sensitive diagnostic tests which can be used to screen semen for LSD viral DNA prior to artificial insemination. Although cell culture is a sensitive method and detects infectious virus, its use has major limitations due to the toxic effect of semen on the cells. This study was therefore aimed at finding a method that decreases the toxic effect of semen on cell culture and enhances LSDV isolation. Secondly, the efficiency of this method in enhancing the isolation of LSDV in field samples was tested. In order to eliminate the toxic effect of semen on cell culture, a pilot study was conducted in which semen samples from LSDV sero-negative bulls were collected and infected with a field isolate of LSDV, strain 248/93 with a titre of 6.5 log TCID50. The semen samples were subjected to one of four different methods, viz centrifugation, serial dilution, filtration and chemical treatment with kaolin. The centrifugation, serial dilution, and filtration methods were supplemented with additional amounts of gentamycin. The toxic effects of semen on cell culture were completely eliminated when supernatants of semen samples, centrifuged at 2000 rpm for 1, 3 and 5 mins and serial diluted was used to inoculate confluent monolayers of bovine dermis cells. Semen diluted in MEM with or without additional antibiotics was the most sensitive method of demonstrating virus at higher dilutions, followed by pellets of samples centrifuged for 1 and 3 minutes. The toxicity recorded when the pellet fraction of semen samples were centrifuged for 5 mins at 2000 rpm was comparable to results obtained from serially diluted samples supplemented with gentamycin. The use of filtration and kaolin treatment of semen samples could not remove the toxic effect of semen on cells. To evaluate the presence of LSDV in semen of experimentally infected bulls, six seronegative post-pubertal bulls housed in an insect proof facility were infected with LSDV via the intravenous route. The experimentally infected bulls were monitored for clinical sign of the disease. Two bulls showed severe, two a mild and two an inapparent infection. Blood samples were collected for virus isolation and semen samples for virus isolation and PCR. Vesicular fluid and preputial washes were also investigated for the presence of LSD viral nucleic acid using PCR. The infectious titre of the virus shed in semen of these bulls was also calculated. The incubation period in infected bulls varied from 7 to 14 days. The length of viraemia varied between groups and did not correlate with the severity of clinical disease. The virus was isolated from blood samples of bulls in the severely infected group on several occasions. Bulls in the mildly infected group had the lowest rate of isolated virus when compared to those with inapparent infection. The use of supernatants of centrifuged serial diluted semen samples, as shown in the pilot study, have considerably reduced the toxic effect of semen on cell culture. This method was used to test field samples for its sensitivity to isolated LSDV in semen of experimentally infected bulls with PCR as a gold standard. In all the semen samples tested using supernatants of semen samples LSDV was isolated in 53.1% of the samples on cell culture while in the serial diluted samples, only 28.1% of samples were positive with a median time of detection on cell culture of 4 and 8 days, respectively. The use of the supernatant fraction was able to detect infectious LSDV in semen samples for prolonged periods with reduced time of development of cytopathic effect, than previously reported. In order to compare the sensitivity of PCR and virus isolation, PCR positive and a few negative samples were subjected to virus isolation using the centrifugation method developed in the pilot study. The PCR was able to detect LSD viral nucleic acids in some semen samples even when virus could not be isolated on cell culture. The PCR was also able to detect viral nucleic acid in vesicular fluid and preputial washes of infected bulls. The titre of the virus shed in the semen at a certain stage of the infection was calculated to be 3 log TCID50. In conclusion, this study provides evidence of a complete reduction of the toxic effect of semen on cell culture and increase chances of LSDV isolation with reduced detection time when semen samples are processed using the centrifugation method as described in the pilot study. Furthermore, it showed PCR was more sensitive than virus isolation in the detection of LSD viral nucleic acid in semen samples and can be used for routine diagnosis. However, virus isolation must be used when the infective nature of virus shed in semen is desirable. This study provides the first evidence of the shedding of LSDV nucleic acid in vesicular fluid and preputial washes of experimentally infected bulls. It also represents the first report that a considerable amount of LSDV is shed in semen of experimentally infected bulls, which may be infective at certain stages of clinical disease. / Dissertation (MSc (Veterinary Science))--University of Pretoria, 2006. / Veterinary Tropical Diseases / unrestricted
3

Analysis of viral and cellular gene expression patterns in cells latently infected with EBV by suppression subtractive hybridization /

Kiss, Csaba, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.

Page generated in 0.0701 seconds