• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tidal distortion of a neutron star in the vicinity of a black hole

Naidoo, Monogaran 11 1900 (has links)
We will consider the scenario of the co-rotation of a fluid star (in specific, a neutron star) and a black hole. The neutron star (or primary)is assumed to have constant angular velocity. The tidal effects on the primary are investigated. First, the centrally condensed approximation is applied, where both bodies are considered as point sources. In the second treatment, the primary is treated as an incompressible and homogeneous fluid mass, which in addition to its own gravity is subject to centrifugal and Coriolis forces, derived from fluid motions. The black hole (or secondary) is treated as a rigid sphere and can be regarded as a point mass. The equilibrium figure is derived. The problem is then adapted to include vorticity and a pseudo-Newtonian potential. The coalescence of neutron star - black hole binaries and their importance to gravitational wave detection is also discussed. / Mathematical Sciences / M. Sc. (Applied Mathematics)
2

Tidal distortion of a neutron star in the vicinity of a black hole

Naidoo, Monogaran 11 1900 (has links)
We will consider the scenario of the co-rotation of a fluid star (in specific, a neutron star) and a black hole. The neutron star (or primary)is assumed to have constant angular velocity. The tidal effects on the primary are investigated. First, the centrally condensed approximation is applied, where both bodies are considered as point sources. In the second treatment, the primary is treated as an incompressible and homogeneous fluid mass, which in addition to its own gravity is subject to centrifugal and Coriolis forces, derived from fluid motions. The black hole (or secondary) is treated as a rigid sphere and can be regarded as a point mass. The equilibrium figure is derived. The problem is then adapted to include vorticity and a pseudo-Newtonian potential. The coalescence of neutron star - black hole binaries and their importance to gravitational wave detection is also discussed. / Mathematical Sciences / M. Sc. (Applied Mathematics)

Page generated in 0.06 seconds