• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degradation Models for the Collapse Analysis of Composite Aerospace Structures

Orifici, Adrian Cirino, adrian.orifici@student.rmit.edu.au January 2007 (has links)
For the next generation of aircraft, the use of fibre-reinforced polymer composites and the design of
2

Détection de l'initiation de la délamination des matériaux composites par suivi de l'émission acoustique

Silversides, Ian January 2012 (has links)
Cette étude, basée sur la surveillance des ondes d'émission acoustique (E.A.), présente le développement d'une approche de prédiction de l'initiation de la délamination de pièces composites soumises à des chargements statiques et en fatigue. La surveillance des ondes d'E.A. fait parti d'un nombre restreint de méthodes pouvant détecter, en continu, l'apparition et la croissance de dommages dans les matériaux composites. L'approche est comparée à des méthodes conventionnelles ainsi qu'à une modélisation numérique pour des composites à fibre de carbone unidirectionnels et tissés, sur une gamme de rapports de mode mixte. Le présent mémoire met en lumière les différentes étapes abordées durant l'étude. L'utilisation des matériaux composites est mise en contexte au premier chapitre. La complexité des matériaux composites ainsi que la nécessité de modèles de prédiction fiables sont soulignées. Le deuxième chapitre contient une revue de la littérature et présente les outils disponibles pour analyser le délaminage et bâtir un modèle prédictif de sa propagation. Les sujets traités sont la délamination dans un contexte de mécanique de la rupture, la modélisation numérique d'une propagation de fissure, l'approche du monitorage par émission acoustique puis l'analyse fractographiques des surfaces de rupture. Les résultats des essais mécaniques et de la modélisation sont présentés sous forme d'article dans le troisième chapitre. Des essais statiques et en fatigue ont permis de calculer le taux de restitution d'énergie de déformation à l'initiation de la délamination selon des méthodes classiques pour ensuite les comparer à une méthode développée, basée sur le suivi des ondes d'émission acoustique. Une série d'essais de propagation de la délamination en fatigue ont permis d'observer des corrélations entre les émissions acoustiques, la longueur de la délamination, la vitesse de croissance des fissures et la sévérité du chargement. Finalement, une méthodologie de reconnaissance des formes non supervisée est présentée afin de discriminer les signaux d'E.A. d'amorçage et de propagation de fissure du bruit associé à la fatigue.
3

The Structural Integrity And Damage Tolerance Of Composite T-Joints in Naval Vessels

Dharmawan, Ferry, ferry.dharmawan@rmit.edu.au January 2008 (has links)
In this thesis, the application of composite materials for marine structures and specifically naval vessels has been explored by investigating its damage criticality. The use of composite materials for Mine Counter Measure Vessels (MCMVs) was desirable, especially for producing material characteristics, such as light weight, corrosion resistance, design flexibility due to its anisotropic nature and most importantly stealth capability. The T-Joint structure, as the primary connection between the hull and bulkhead forms the focus of this research. The aim of the research was to determine the methodology to predict the damage criticality of the T-Joint under a pull-off tensile loading using FE (Finite Element) based fracture mechanics theory. The outcome of the research was that the Finite Element (FE) simulations were used in conjunction with fracture mechanics theory to determine the failure mechanism of the T-Joint in the presence of disbonds in the critical loca tion. It enables certain pre-emptive strengthening mechanisms or other preventive solutions to be made since the T-Joint responses can be predicted precisely. This knowledge contributes to the damage tolerance design methodology for ship structures, particularly in the T-Joint design. The results comparison between the VCCT (Virtual Crack Closure Technique) analysis and the experiment results showed that the VCCT is a dependable analytical method to predict the T-Joint failure mechanisms. It was capable of accurately determining the crack initiation and final fracture load. The maximum difference between the VCCT analysis with the experiment results was approximately 25% for the T-Joint with a horizontal disbond. However, the application of the CTE (Crack Tip Element) method for the T-Joint displayed a huge discrepancy compared with the results (fracture toughness) obtained using the VCCT method, because the current T-Joint structure geometry did not meet the Classical Laminate Plate Theory (CLPT) criteria. The minimum fracture toughness difference for both analytical methods was approximately 50%. However, it also has been tested that when the T-Joint structure geometry satisfied the CLPT criteria, the maximum fracture toughness discrepancy between both analytical methods was only approximately 10%. It was later discovered from the Griffith energy principle that the fracture toughness differences between both analytical methods were due to the material compliance difference as both analytical methods used different T-Joint structures.
4

Assessment Of Different Finite Elementmodeling Techniques On Delamination Growth Inadvanced Composite Structures

Ucak, Ibrahim 01 February 2012 (has links) (PDF)
Virtual crack closure technique (VCCT) is commonly used to analyze debonding/delamination onset and growth in fiber reinforced composite assemblies. VCCT is a computational fracture mechanics based approach, and is based on Irwin&rsquo / s crack closure integral. In this study, the debonding/delamination onset and growth potential in a bonded fiber reinforced composite skin-flange assembly is investigated using the VCCT. A parametric finite element analyses is conducted. The finite element analyses results are compared with coupon level experimental results available in the literature. The effects of different finite element modeling techniques are investigated. The bonded flange-assembly is modeled with pure solid (3D) elements, plane stress (2D) shell elements and plane strain (2D) shell elements. In addition, mesh density, element order and geometric non-linearity parameters are investigated as well. The accuracy and performance of these different modeling techniques are assessed. Finally, effect of initial defect location on delamination growth potential is investigated. The results presented in this study are expected to provide an insight to practicing engineers in the aerospace industry.
5

Effect of Phase Transformation on the Fracture Behavior of Shape Memory Alloys

Parrinello, Antonino 16 December 2013 (has links)
Over the last few decades, Shape Memory Alloys (SMAs) have been increasingly explored in order to take advantage of their unique properties (i.e., pseudoelasticity and shape memory effect), in various actuation, sensing and absorption applications. In order to achieve an effective design of SMA-based devices a thorough investigation of their behavior in the presence of cracks is needed. In particular, it is important to understand the effect of phase transformation on their fracture response. The aim of the present work is to study the effect of stress-induced as well as thermo-mechanically-induced phase transformation on several characteristics of the fracture response of SMAs. The SMA thermomechanical response is modeled through an existing constitutive phenomenological model, developed within the framework of continuum thermodynamics, which has been implemented in a finite element frame-work. The effect of stress-induced phase transformation on the mechanical fields in the vicinity of a stationary crack and on the toughness enhancement associated with crack advance in an SMA subjected to in-plane mode I loading conditions is examined. The small scale transformation assumption is employed in the analysis according to which the size of the region occupied by the transformed material forming close to the crack tip is small compared to any characteristic length of the problem (i.e. the size of the transformation zone is thirty times smaller than the size of the cracked ligament). Given this assumption, displacement boundary conditions, corresponding to the Irwin’s solution for linear elastic fracture mechanics, are applied on a circular region in the austenitic phase that encloses the stress-induced phase transformation zone. The quasi-static stable crack growth is studied by assuming that the crackpropagates at a certain critical level of the crack-tip energy release rate. The Virtual Crack Closure Technique (VCCT) is employed to calculate the energy release rate. Fracture toughness enhancement associated with transformation dissipation is observed and its sensitivity on the variation of key characteristic non-dimensional parameters related to the constitutive response is investigated. Moreover, the effect of the dissipation due plastic deformation on the fracture resistance is analyzed by using a Cohesive Zone Model (CZM). The effect of thermo-mechanically-induced transformation on the driving force for crack growth is analyzed in an infinite center-cracked SMA plate subjected to thermal actuation under isobaric mode I loading. The crack-tip energy release rate is identified as the driving force for crack growth and is measured over the entire thermal cycle by means of the VCCT. A substantial increase of the crack-tip energy release rate – an order of magnitude for some material systems – is observed during actuation as a result of phase transformation, i.e., martensitic transformation occurring during actuation causes anti-shielding that might cause the energy release rate to reach the critical value for crack growth. A strong dependence of the crack-tip energy release rate on the variation of the thermomechanical parameters characterizing the material response is examined. Therefore, it is implied that the actual shape of the strain- temperature curve is important for the quantitative determination of the change of the crack-tip energy release rate during actuation.

Page generated in 0.2679 seconds