• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Frame Transmission For Scalable Video Streaming with Dependency Structure

Mehdian, Saied 22 November 2012 (has links)
Efficient transmission schemes are presented for streaming scalable video over a link with limited capacity. The objective is to select a transmission sequence of data units and their transmission schedule such that the overall video quality is maximized. For video with a single spatial layer, optimal transmission schemes are obtained for two general classes of hierarchical prediction structures, which include the popular dyadic structure. Based on a new characterization of the interdependence among frames in terms of trees, structural properties of an optimal transmission schedule are derived. These properties lead to the development of a jointly optimal frame selection and scheduling algorithm, which has computational complexity that is quadratic in the number of frames. Then, using the concept of virtual deadlines, an efficient sub-optimal scheme for the transmission of video with multiple spatial layers is proposed. Simulation results show that the proposed schemes substantially outperform two existing alternatives.
2

Efficient Frame Transmission For Scalable Video Streaming with Dependency Structure

Mehdian, Saied 22 November 2012 (has links)
Efficient transmission schemes are presented for streaming scalable video over a link with limited capacity. The objective is to select a transmission sequence of data units and their transmission schedule such that the overall video quality is maximized. For video with a single spatial layer, optimal transmission schemes are obtained for two general classes of hierarchical prediction structures, which include the popular dyadic structure. Based on a new characterization of the interdependence among frames in terms of trees, structural properties of an optimal transmission schedule are derived. These properties lead to the development of a jointly optimal frame selection and scheduling algorithm, which has computational complexity that is quadratic in the number of frames. Then, using the concept of virtual deadlines, an efficient sub-optimal scheme for the transmission of video with multiple spatial layers is proposed. Simulation results show that the proposed schemes substantially outperform two existing alternatives.

Page generated in 0.0576 seconds