• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interprocess Communication Mechanisms With Inter-Virtual Machine Shared Memory

Ke, Xiaodi Unknown Date
No description available.
2

VM allocation in cloud datacenters based on the multi-agent system : an investigation into the design and response time analysis of a multi-agent-based virtual machine (VM) allocation/placement policy in cloud datacenters

Al-ou'n, Ashraf M. S. January 2017 (has links)
Recent years have witnessed a surge in demand for infrastructure and services to cover high demands on processing big chunks of data and applications resulting in a mega Cloud Datacenter. A datacenter is of high complexity with increasing difficulties to identify, allocate efficiently and fast an appropriate host for the requested virtual machine (VM). Establishing a good awareness of all datacenter’s resources enables the allocation “placement” policies to make the best decision in reducing the time that is needed to allocate and create the VM(s) at the appropriate host(s). However, current algorithms and policies of placement “allocation” do not focus efficiently on awareness of the resources of the datacenter, and moreover, they are based on conventional static techniques. Which are adversely impacting on the allocation progress of the policies. This thesis proposes a new Agent-based allocation/placement policy that employs some of the Multi-Agent system features to get a good awareness of Cloud Datacenter resources and also provide an efficient allocation decision for the requested VMs. Specifically, (a) The Multi-Agent concept is used as a part of the placement policy (b) A Contract Net Protocol is devised to establish good awareness and (c) A verification process is developed to fully dimensional VM specifications during allocation. These new results show a reduction in response time of VM allocation and the usage improvement of occupied resources. The proposed Agent-based policy was implemented using the CloudSim toolkit and consequently was compared, based on a series of typical numerical experiments, with the toolkit’s default policy. The comparative study was carried out in terms of the time duration of VM allocation and other aspects such as the number of available VM types and the amount of occupied resources. Moreover, a two-stage comparative study was introduced through this thesis. Firstly, the proposed policy is compared with four state of the art algorithms, namely the Random algorithm and three one-dimensional Bin-Packing algorithms. Secondly, the three Bin-Packing algorithms were enhanced to have a two-dimensional verification structure and were compared against the proposed new algorithm of the Agent-based policy. Following a rigorous comparative study, it was shown that, through the typical numerical experiments of all stages, the proposed new Agent-based policy had superior performance in terms of the allocation times. Finally, avenues arising from this thesis are included.
3

Cost-efficient resource allocation for green distributed clouds / Allocation de ressources pour un cloud green et distribué

Ahvar, Ehsan 09 January 2017 (has links)
L'objectif de cette thèse est de présenter de nouveaux algorithmes de placement de machines virtuelles (VMs) à fin d’optimiser le coût et les émissions de carbone dans les Clouds distribués. La thèse se concentre d’abord sur la rentabilité des Clouds distribués, et développe ensuite les raisons d’optimiser les coûts ainsi que les émissions de carbone. La thèse comprend deux principales parties: la première propose, développe et évalue les algorithmes de placement statiques de VMs (où un premier placement d'une VM détient pendant toute la durée de vie de la VM). La deuxième partie propose des algorithmes de placement dynamiques de VMs où le placement initial de VM peut changer dynamiquement (par exemple, grâce à la migration de VMs et à leur consolidation). Cette thèse comprend cinq contributions. La première contribution est une étude de l'état de l'art sur la répartition des coûts et des émissions de carbone dans les environnements de clouds distribués. La deuxième contribution propose une méthode d'allocation des ressources, appelée NACER, pour les clouds distribués. L'objectif est de minimiser le coût de communication du réseau pour exécuter une tâche dans un cloud distribué. La troisième contribution propose une méthode de placement VM (appelée NACEV) pour les clouds distribués. NACEV est une version étendue de NACER. Tandis que NACER considère seulement le coût de communication parmi les DCs, NACEV optimise en même temps les coûts de communication et de calcul. Il propose également un algorithme de cartographie pour placer des machines virtuelles sur des machines physiques (PM). La quatrième contribution présente une méthode de placement VM efficace en termes de coûts et de carbone (appelée CACEV) pour les clouds distribués verts. CACEV est une version étendue de NACEV. En plus de la rentabilité, CACEV considère l'efficacité des émissions de carbone pour les clouds distribués. Pour obtenir une meilleure performance, la cinquième contribution propose une méthode dynamique de placement VM (D-CACEV) pour les clouds distribués. D-CACEV est une version étendue de notre travail précédent, CACEV, avec des chiffres supplémentaires, une description et également des mécanismes de migration de VM en direct. Nous montrons que notre mécanisme conjoint de réallocation-placement de VM peut constamment optimiser à la fois le coût et l'émission de carbone dans un cloud distribué / Virtual machine (VM) placement (i.e., resource allocation) method has a direct effect on both cost and carbon emission. Considering the geographic distribution of data centers (DCs), there are a variety of resources, energy prices and carbon emission rates to consider in a distributed cloud, which makes the placement of VMs for cost and carbon efficiency even more critical and complex than in centralized clouds. The goal of this thesis is to present new VM placement algorithms to optimize cost and carbon emission in a distributed cloud. It first focuses on cost efficiency in distributed clouds and, then, extends the goal to optimization of both cost and carbon emission at the same time. Thesis includes two main parts. The first part of thesis proposes, develops and evaluates static VM placement algorithms to reach the mentioned goal where an initial placement of a VM holds throughout the lifetime of the VM. The second part proposes dynamic VM placement algorithms where the initial placement of VMs is allowed to change (e.g., through VM migration and consolidation). The first contribution is a survey of the state of the art on cost and carbon emission resource allocation in distributed cloud environments. The second contribution targets the challenge of optimizing inter-DC communication cost for large-scale tasks and proposes a Network-Aware Cost-Efficient Resource allocation method, called NACER, for distributed clouds. The goal is to minimize the network communication cost of running a task in a distributed cloud by selecting the DCs to provision the VMs in such a way that the total network distance (hop count or any reasonable measure) among the selected DCs is minimized. The third contribution proposes a Network-Aware Cost Efficient VM Placement method (called NACEV) for Distributed Clouds. NACEV is an extended version of NACER. While NACER only considers inter-DC communication cost, NACEV optimizes both communication and computing cost at the same time and also proposes a mapping algorithm to place VMs on Physical Machines (PMs) inside of the selected DCs. NACEV also considers some aspects such as heterogeneity of VMs, PMs and switches, variety of energy prices, multiple paths between PMs, effects of workload on cost (energy consumption) of cloud devices (i.e., switches and PMs) and also heterogeneity of energy model of cloud elements. The forth contribution presents a Cost and Carbon Emission-Efficient VM Placement Method (called CACEV) for green distributed clouds. CACEV is an extended version of NACEV. In addition to cost efficiency, CACEV considers carbon emission efficiency and green distributed clouds. It is a VM placement algorithm for joint optimization of computing and network resources, which also considers price, location and carbon emission rate of resources. It also, unlike previous contributions of thesis, considers IaaS Service Level Agreement (SLA) violation in the system model. To get a better performance, the fifth contribution proposes a dynamic Cost and Carbon Emission-Efficient VM Placement method (D-CACEV) for green distributed clouds. D-CACEV is an extended version of our previous work, CACEV, with additional figures, description and also live VM migration mechanisms. We show that our joint VM placement-reallocation mechanism can constantly optimize both cost and carbon emission at the same time in a distributed cloud
4

VM Allocation in Cloud Datacenters Based on the Multi-Agent System. An Investigation into the Design and Response Time Analysis of a Multi-Agent-based Virtual Machine (VM) Allocation/Placement Policy in Cloud Datacenters

Al-ou'n, Ashraf M.S. January 2017 (has links)
Recent years have witnessed a surge in demand for infrastructure and services to cover high demands on processing big chunks of data and applications resulting in a mega Cloud Datacenter. A datacenter is of high complexity with increasing difficulties to identify, allocate efficiently and fast an appropriate host for the requested virtual machine (VM). Establishing a good awareness of all datacenter’s resources enables the allocation “placement” policies to make the best decision in reducing the time that is needed to allocate and create the VM(s) at the appropriate host(s). However, current algorithms and policies of placement “allocation” do not focus efficiently on awareness of the resources of the datacenter, and moreover, they are based on conventional static techniques. Which are adversely impacting on the allocation progress of the policies. This thesis proposes a new Agent-based allocation/placement policy that employs some of the Multi-Agent system features to get a good awareness of Cloud Datacenter resources and also provide an efficient allocation decision for the requested VMs. Specifically, (a) The Multi-Agent concept is used as a part of the placement policy (b) A Contract Net Protocol is devised to establish good awareness and (c) A verification process is developed to fully dimensional VM specifications during allocation. These new results show a reduction in response time of VM allocation and the usage improvement of occupied resources. The proposed Agent-based policy was implemented using the CloudSim toolkit and consequently was compared, based on a series of typical numerical experiments, with the toolkit’s default policy. The comparative study was carried out in terms of the time duration of VM allocation and other aspects such as the number of available VM types and the amount of occupied resources. Moreover, a two-stage comparative study was introduced through this thesis. Firstly, the proposed policy is compared with four state of the art algorithms, namely the Random algorithm and three one-dimensional Bin-Packing algorithms. Secondly, the three Bin-Packing algorithms were enhanced to have a two-dimensional verification structure and were compared against the proposed new algorithm of the Agent-based policy. Following a rigorous comparative study, it was shown that, through the typical numerical experiments of all stages, the proposed new Agent-based policy had superior performance in terms of the allocation times. Finally, avenues arising from this thesis are included. / Al al-Bayt University in Jordan.

Page generated in 0.0806 seconds