• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 43
  • 21
  • 2
  • 1
  • Tagged with
  • 147
  • 147
  • 43
  • 42
  • 37
  • 31
  • 30
  • 30
  • 27
  • 26
  • 25
  • 24
  • 22
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Combination of the Computational Methods: Molecular dynamics, Homology Modeling and Docking to Design Novel Inhibitors and study Structural Changes in Target Proteins for Current Diseases

Parra, Katherine Cristina 11 April 2014 (has links)
In this thesis, molecular dynamics simulations, molecular docking, and homology modeling methods have been used in combination to design possible inhibitors as well as to study the structural changes and function of target proteins related to diseases that today are in the spotlight of drug discovery. The inwardly rectifying potassium (Kir) channels constitute the first target in this study; they are involved in cardiac problems. On the other hand, tensin, a promising target in cancer research, is the second target studied here. The first chapter includes a brief update on computational methods and the current proposal of the combination of MD simulations and docking techniques, a procedure that is applied for the engineering of a new blocker for Kir2.1 ion channels and for the design of possible inhibitors for Tensin. Chapter two focuses in Kir ion channels that belong to the family of potassium-selective ion channels which have a wide range of physiological activity. The resolved crystal structure of a eukaryotic Kir channel was used as a secondary structure template to build the Kir-channels whose crystallographic structures are unavailable. Tertiapin (TPN), a 21 a.a. peptide toxin found in honey bee venom that blocks a type of Kir channels with high affinity was also used to design new Kir channel blockers. The computational methods homology modeling and protein-protein docking were employed to yield Kir channel-TPN complexes that showed good binding affinity scores for TPN-sensitive Kir channels, and less favorable for Kir channels insensitive to TPN block. The binding pocket of the insensitive Kir-channels was studied to engineer novel TPN-based peptides that show favorable binding scores via thermodynamic mutant-cycle analysis. Chapter three is focused on the building of homology models for Tensin 1, 2 and 3 domains C2 and PTP using the PTEN X-ray crystallographic structure as a secondary structure template. Molecular docking was employed for the screening of druggable small molecules and molecular dynamics simulations were also used to study the tensin structure and function in order to give some new insights of structural data for experimental binding and enzymatic assays. Chapter four describes the conformational changes of FixL, a protein of bradyrhizobia japonicum. FixL is a dimer known as oxygen sensor that is involved in the nitrogen fixation process of root plants regulating the expression of genes. Ligand behavior has been investigated after the dissociation event, also the structural changes that are involved in the relaxation to the deoxy state. Molecular dynamics simulations of the CO-bound and CO-unbound bjFixL heme domain were performed during 10 ns in crystal and solution environments then analyzed using Principal Component Analysis (PCA). Our results show that the diffusion of the ligand is influenced by internal motions of the bound structure of the protein before CO dissociation, implying an important role for Arg220. In turn, the location of the ligand after dissociation affects the conformational changes within the protein. The study suggests the presence of a cavity close to the methine bridge C of the heme group in agreement with spectroscopic probes and that Arg220 acts as a gate of the heme cavity.
12

Inhibition and regulation of Mycobacterium tuberculosis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase

Reichau, Sebastian January 2013 (has links)
The shikimate pathway is responsible for the biosynthesis of the aromatic amino acids and other aromatic metabolites in plants, micro-organisms and apicomplexan parasites. The shikimate pathway is essential in bacteria and plants, but absent from mammals, which has led to interest in the enzymes of the pathway as targets for the design of antimicrobial and herbicidal agents. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first commit¬ted step of the shikimate pathway, the condensation of phosphoenolpyruvate and erythrose 4-phosphate to yield 3-deoxy-D-arabino-heptulosonate 7-phosphate. The subject of this thesis is the investigation of inhibition and allosteric regulation of the DAH7PS enzyme from Myco¬bacterium tuberculosis (MtuDAH7PS), the pathogen that causes tuberculosis. Tuberculosis remains a major health threat to the global community, and the emergence of multi-drug resistant strains highlights the need for new tuberculosis treatments. Inhibitors of MtuDAH7PS have the potential to be developed into new anti-tuberculosis drugs. Chapter 2 describes the design, synthesis and evaluation of active site inhibitors based on intermediate mimic scaffolds. The intermediate mimics synthesised represent the first reported example of inhibitors targeting the active site of MtuDAH7PS. The most active compounds tested displayed inhibition constants in the sub-micromolar range, making them the most potent inhibitors of any DAH7PS enzyme reported to date. MtuDAH7PS displays a complex and subtle mechanism of synergistic regulation: The enzyme is inhibited by binary combinations of the aromatic amino acids tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr). Three allosteric binding sites were identified using X-ray crystallo¬graphic analysis of MtuDAH7PS in complex with Trp and Phe. While these crystal structures led to the identification of an allosteric binding site which preferentially binds Trp, the role and selectivity of the other two sites with respect to Phe and Tyr remained unclear. The results described in Chapter 3 provide structural and biochemical evidence for the hypothesis that each of the three allosteric binding sites has a preference for binding one of the aromatic amino acids Trp, Phe and Tyr, respectively. The results furthermore show that the ternary combination of Trp, Phe and Tyr synergistically regulates MtuDAH7PS, leading to almost complete loss of enzymatic activity in the presence of all three allosteric ligands. In Chapter 4, the interaction of MtuDAH7PS with the naturally less common D-enantiomers of the aromatic amino acids is described. It was found that the D-enantiomers of the aromatic amino acids have no effect on enzymatic activity of MtuDAH7PS, suggesting an efficient mechanism by which the enzyme can discriminate between allosteric ligands of opposite configuration. Studies of the binding affinity of the D-amino acids to MtuDAH7PS as well as structural characterisation of MtuDAH7PS-D-amino acid complexes by X-ray crystallographic analysis suggest that D-Trp and D-Phe can still bind to their respective sites. The lack of inhibition is attributed to subtle differences in the binding mode of the D-enantiomers of the ligands compared to the L-enantiomers. Chapter 5 details the discovery of alternative ligands and inhibitors targeting the allosteric sites of MtuDAH7PS using virtual screening. Libraries of potential alternative ligands were docked into the allosteric sites of MtuDAH7PS and the predicted docking poses were used to guide the selection of compounds for physical screening. Using this approach, a number of ligands and inhibitors of MtuDAH7PS were discovered and their interaction with the enzyme structurally characterised. Comparison of the crystallographically observed binding modes of new ligands with the docking poses predicted by computational docking highlighted potential improvements to the virtual screening method. The analysis of the correlation between ligand binding modes and inhibition of enzymatic activity provided further insight into which interactions between the allosteric ligand and the binding site are crucial in order to achieve inhibition. The crystal structures of MtuDAH7PS in complex with the new alternative ligands can serve as a starting point for the design of ligands with increased affinity and potency.
13

Screening of virtual libraries for monoamine oxidase inhibitors / Melinda Barkhuizen

Barkhuizen, Melinda January 2013 (has links)
The traditional view of drug design is that a single drug should interact with a single molecular target. As science progressed, there was an understanding that most drugs interact with more than one target and that multiple targets may be responsible for either adverse effects or additional therapeutic effects. The idea of polypharmacology, which suggests that the focus of drug design should shift from a single drug that interacts with a single target to a single drug that can have interactions with multiple targets and multiple therapeutic effects, revolutionized the drug discovery process. Discovering new drugs is a long and costly process with years of research and development and clinical trials required before the drugs reach the market for much needed therapeutic applications. By repurposing drugs that are already on the market for a new therapeutic target, the discovery process is accelerated significantly. One such a target disease, for which there is a great need for new effective therapies, is Parkinson’s disease (PD). PD is a progressive neurodegenerative disease that is caused by the death of dopaminergic neurons in the substantia nigra with the resulting loss of dopamine from the striatum. Degeneration in PD leads to varying degrees of motor difficulty and disability, along with other symptoms. Current therapies are focussed on symptomatic management and an improvement of the quality of life of patients, rather than on a cure. There are several therapeutic targets that are currently used in the treatment of PD. One of those targets is the monoamine oxidase (MAO) enzymes, in particular the MAO-B isoform. The MAO enzymes are responsible for the metabolism of amine neurotransmitters, such as dopamine, and inhibition of MAO-B has proven to be an effective strategy to increase the dopamine levels in the brain. Clinically, selective MAO-B inhibitors are administered concurrently with levodopa (a precursor of dopamine) to increase the levels of dopamine derived from levodopa. This approach prolongs the beneficial effects of levodopa. Because MAO-A is responsible for the breakdown of noradrenalin, adrenalin, serotonin and tyramine, non-selective and selective MAO-A inhibitors have therapeutic applications in other neurological and psychiatric disorders such as depression. MAO-A inhibitors, particularly irreversible inhibitors, are also notable from a toxicological point of view. Irreversible MAO-A inhibitors may lead to potentially dangerous effects when combined with serotonergic drugs and certain foods containing tyramine, such as cheeses and processed meats. Selective MAO-B inhibitors and reversible MAO-A inhibitors appear to be free of these interactions. Based on the considerations above, this study aimed to identify clinically used drugs which also inhibit the MAO enzymes as a secondary pharmacological property. Such drugs may, in theory, be repurposed as MAO inhibitors for therapeutic use in the treatment of PD and depression. The identification of potential MAO-A inhibitory properties among clinically used drugs are of further importance since the irreversible inhibition of MAO-A may lead to dangerous effects when combined with certain drugs and foods. To screen clinically used drugs for potential MAO-A and MAO-B inhibitory activities, a pharmacophore approach was followed. A pharmacophore model is a virtual 3D representation of the common steric and electrostatic features of the interaction between an enzyme and a ligand. By identifying hydrogen bond acceptor, hydrogen bond donor and hydrophobic interactions between a reference ligand and an enzyme, a model is created that can search databases for other molecules that would have similar interactions with the enzyme and arguably also act as ligands. This enables the screening of a large amount of molecules in a short amount of time. To assist in the identification of MAO inhibitors, pharmacophore models of the MAO enzymes were constructed using the known crystallographic structures of MAO-A co-crystallized with harmine, and MAO-B cocrystallized with safinamide. The Discovery Studio® software package (Accelrys) was used for this purpose. In this study, virtual libraries of United States Food and Drug Administration (FDA) approved drugs and the United States Environmental Protection Agency (EPA) maximum daily dose databases were screened with pharmacophore models of MAO-A and MAO-B. Among the hits, 26 drugs were selected on the basis of availability and cost, and were subjected to in vitro bio-assays in order to determine their potencies (IC50 values) as inhibitors of recombinant human MAO-A and/or MAO-B. Among the drugs tested, 6 compounds exhibited inhibitory activity towards the MAO enzymes. Of the 6 compounds, pentamidine (IC50 = 0.61 μM for MAO-A and IC50 = 0.22 μM for MAO-B) and phenformin (IC50 = 41 μM for MAO-A) were selected for further analysis. An examination of the recoveries of the enzymatic activities after dilution and dialysis of the enzyme-inhibitor complexes showed that both pentamidine and phenformin interact reversibly with the MAO enzymes. A kinetic analysis suggests that pentamidine acts as a competitive inhibitor with estimated Ki values of 0.41 μM and 0.22 μM for the inhibition of MAO-A and MAO-B, respectively. An analysis of the available pharmacokinetic data and typical therapeutic doses of phenformin and pentamidine suggests that the MAO inhibitory potencies (and reversible mode of action) of phenformin are unlikely to be of pharmacological relevance in humans. Pentamidine, on the other hand, is expected to interact with both MAO-A and MAO-B at typical therapeutic doses. Because of its MAO-A inhibitory activity, pentamidine may thus, in theory, lead to a tyramine-associated hypertensive crisis when combined with tyramine-containing foods. However, pentamidine is unlikely to inhibit central MAO since it does not appear to penetrate the central nervous system to a large degree. In an attempt to gain further insight into the mode of binding to MAO, pentamidine and phenformin were docked into models of the active sites of MAO-A and/or MAO-B. An analysis of the interactions between the enzyme models and the ligands were carried out and the results are discussed in the dissertation. The results of this study show that the pharmacophore model approach may be useful in identifying existing drugs with potential MAO inhibitory effects. The search for new therapeutic MAO inhibitors, that can be used in the treatment of certain neurological disorders, including PD and depression, may be accelerated by employing a virtual screening approach. Such an approach may also be more cost effective than the de novo design of MAO inhibitors. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
14

Screening of virtual libraries for monoamine oxidase inhibitors / Melinda Barkhuizen

Barkhuizen, Melinda January 2013 (has links)
The traditional view of drug design is that a single drug should interact with a single molecular target. As science progressed, there was an understanding that most drugs interact with more than one target and that multiple targets may be responsible for either adverse effects or additional therapeutic effects. The idea of polypharmacology, which suggests that the focus of drug design should shift from a single drug that interacts with a single target to a single drug that can have interactions with multiple targets and multiple therapeutic effects, revolutionized the drug discovery process. Discovering new drugs is a long and costly process with years of research and development and clinical trials required before the drugs reach the market for much needed therapeutic applications. By repurposing drugs that are already on the market for a new therapeutic target, the discovery process is accelerated significantly. One such a target disease, for which there is a great need for new effective therapies, is Parkinson’s disease (PD). PD is a progressive neurodegenerative disease that is caused by the death of dopaminergic neurons in the substantia nigra with the resulting loss of dopamine from the striatum. Degeneration in PD leads to varying degrees of motor difficulty and disability, along with other symptoms. Current therapies are focussed on symptomatic management and an improvement of the quality of life of patients, rather than on a cure. There are several therapeutic targets that are currently used in the treatment of PD. One of those targets is the monoamine oxidase (MAO) enzymes, in particular the MAO-B isoform. The MAO enzymes are responsible for the metabolism of amine neurotransmitters, such as dopamine, and inhibition of MAO-B has proven to be an effective strategy to increase the dopamine levels in the brain. Clinically, selective MAO-B inhibitors are administered concurrently with levodopa (a precursor of dopamine) to increase the levels of dopamine derived from levodopa. This approach prolongs the beneficial effects of levodopa. Because MAO-A is responsible for the breakdown of noradrenalin, adrenalin, serotonin and tyramine, non-selective and selective MAO-A inhibitors have therapeutic applications in other neurological and psychiatric disorders such as depression. MAO-A inhibitors, particularly irreversible inhibitors, are also notable from a toxicological point of view. Irreversible MAO-A inhibitors may lead to potentially dangerous effects when combined with serotonergic drugs and certain foods containing tyramine, such as cheeses and processed meats. Selective MAO-B inhibitors and reversible MAO-A inhibitors appear to be free of these interactions. Based on the considerations above, this study aimed to identify clinically used drugs which also inhibit the MAO enzymes as a secondary pharmacological property. Such drugs may, in theory, be repurposed as MAO inhibitors for therapeutic use in the treatment of PD and depression. The identification of potential MAO-A inhibitory properties among clinically used drugs are of further importance since the irreversible inhibition of MAO-A may lead to dangerous effects when combined with certain drugs and foods. To screen clinically used drugs for potential MAO-A and MAO-B inhibitory activities, a pharmacophore approach was followed. A pharmacophore model is a virtual 3D representation of the common steric and electrostatic features of the interaction between an enzyme and a ligand. By identifying hydrogen bond acceptor, hydrogen bond donor and hydrophobic interactions between a reference ligand and an enzyme, a model is created that can search databases for other molecules that would have similar interactions with the enzyme and arguably also act as ligands. This enables the screening of a large amount of molecules in a short amount of time. To assist in the identification of MAO inhibitors, pharmacophore models of the MAO enzymes were constructed using the known crystallographic structures of MAO-A co-crystallized with harmine, and MAO-B cocrystallized with safinamide. The Discovery Studio® software package (Accelrys) was used for this purpose. In this study, virtual libraries of United States Food and Drug Administration (FDA) approved drugs and the United States Environmental Protection Agency (EPA) maximum daily dose databases were screened with pharmacophore models of MAO-A and MAO-B. Among the hits, 26 drugs were selected on the basis of availability and cost, and were subjected to in vitro bio-assays in order to determine their potencies (IC50 values) as inhibitors of recombinant human MAO-A and/or MAO-B. Among the drugs tested, 6 compounds exhibited inhibitory activity towards the MAO enzymes. Of the 6 compounds, pentamidine (IC50 = 0.61 μM for MAO-A and IC50 = 0.22 μM for MAO-B) and phenformin (IC50 = 41 μM for MAO-A) were selected for further analysis. An examination of the recoveries of the enzymatic activities after dilution and dialysis of the enzyme-inhibitor complexes showed that both pentamidine and phenformin interact reversibly with the MAO enzymes. A kinetic analysis suggests that pentamidine acts as a competitive inhibitor with estimated Ki values of 0.41 μM and 0.22 μM for the inhibition of MAO-A and MAO-B, respectively. An analysis of the available pharmacokinetic data and typical therapeutic doses of phenformin and pentamidine suggests that the MAO inhibitory potencies (and reversible mode of action) of phenformin are unlikely to be of pharmacological relevance in humans. Pentamidine, on the other hand, is expected to interact with both MAO-A and MAO-B at typical therapeutic doses. Because of its MAO-A inhibitory activity, pentamidine may thus, in theory, lead to a tyramine-associated hypertensive crisis when combined with tyramine-containing foods. However, pentamidine is unlikely to inhibit central MAO since it does not appear to penetrate the central nervous system to a large degree. In an attempt to gain further insight into the mode of binding to MAO, pentamidine and phenformin were docked into models of the active sites of MAO-A and/or MAO-B. An analysis of the interactions between the enzyme models and the ligands were carried out and the results are discussed in the dissertation. The results of this study show that the pharmacophore model approach may be useful in identifying existing drugs with potential MAO inhibitory effects. The search for new therapeutic MAO inhibitors, that can be used in the treatment of certain neurological disorders, including PD and depression, may be accelerated by employing a virtual screening approach. Such an approach may also be more cost effective than the de novo design of MAO inhibitors. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
15

Evaluation of Fragment-Based Virtual Screening by Applying Docking on Fragments obtained from Optimized Ligands

Nawsheen, Sabia January 2021 (has links)
Fragment-based virtual screening is an in-silico method that potentially identifies new startingpoints for drug molecules and provides an inexpensive and fast exploration of the relevantchemical space compared to its experimental counterpart. It focuses on docking small potentialbinding fragments to a binding pocket and is used to design improved binders by growing thefragments or joining fragments using suitable linkers. In this project, a fragment-based virtualscreening was evaluated by docking 21 fragments that are obtained from 4 different drugs. Here,the fragments were evaluated using SP score in place and SP and XP flexible docking methodsand were compared to the results of the two decoy fragment datasets. Three of the investigatedfragments are positioned at the top and docked with the correct poses and pockets when comparedto the corresponding substructure in the crystal structure and thus could be considered a successfulfragment starting points. Out of the two flexible docking methods used, the SP method providedadditional correct poses and pockets than XP in this limited dataset.
16

Structure-based drug discovery against a novel antimalarial drug target, S-adenosylmethionine decarboxylase/ornithine decarboxylase

Reynolds, Jonathan James 07 February 2013 (has links)
Malaria is one of the most life-threatening diseases affecting mankind, with over 3 billion people being at risk of infection, with most of these people living in Africa, South America and Asia. As the malaria parasite is rapidly becoming resistant to many of the possible treatments on the market, it is of upmost importance to identify new possible drug targets and describe drugs against these that are inexpensive, easy to manufacture and have a long shelf-life in order to combat malaria. One such target is the polyamine pathway. The polyamines putrescine, spermidine, and spermine are crucial for cell differentiation and proliferation. Interference with polyamine biosynthesis by inhibition of the rate-limiting enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) has been discussed as a potential chemotherapy of cancer and parasitic infections. Usually, both enzymes are individually transcribed and highly regulated as monofunctional proteins. However, ODC and AdoMetDC from P. falciparum (PfODC and PfAdoMetDC, respectively) are found as a unique bifunctional protein (PfAdoMetDC/ODC) in the malaria parasite, making it an enticing target for new, selective antimalarial chemotherapies. In order to apply structure-based drug discovery strategies to design inhibitors for PfAdoMetDC/ODC, the atomic resolution structures of these proteins are needed. Each individual domain has had its structure proposed through homology modelling; however atomic resolution structures of these domains are not yet available. The homology model of PfAdoMetDC/ODC has not yet been elucidated due to the interactions between the domains of the bifunctional protein not being fully understood. High levels of recombinant expression of the bifunctional protein have been either unsuccessful or resulted in the formation of insoluble proteins being produced. The purpose of this project is to optimise the recombinant expression of PfAdoMetDC/ODC, and the PfODC domain, to produce high yields of pure, soluble protein for subsequent atomic resolution structure determination. Ultimately, this will enable the utilisation of PfAdoMetDC/ODC in structure-based drug discovery strategies. Overexpression of P. falciparum proteins in E. coli is notoriously difficult, mainly due to the codon bias between the two species. Comparative studies were performed on four constructs of the PfAdoMetDC/ODC gene, containing either the wild-type, fully codon harmonised, or partially codon harmonised gene sequences to analyse the effect codon harmonisation had on protein expression and activity of both domains of PfAdoMetDC/ODC as well as on the monofunctional PfODC domain. Codon harmonisation did not improve the expression levels or the purity of recombinantly expressed PfAdoMetDC/ODC or the monofunctional PfODC domain. Truncated versions of both proteins, and contamination by the E. coli chaperone proteins DnaK and GroEL, were present in the protein samples even after purification by affinity chromatography. However, codon harmonisation improved the activity levels of the PfAdoMetDC domain, while decreasing the activity of the PfODC domain of PfAdoMetDC/ODC. Harmonisation of the monofunctional PfODC domain resulted in a decrease in the activity of the protein. In order to identify possible inhibitors of the PfODC domain of the bifunctional protein, a structure-based drug discovery study was initiated based on a homology model for PfODC. Four hundred compounds with known antimalarial activity were virtually screened against the PfODC homology model and the top two scoring compounds were selected for enzyme inhibition assays based on their predictive binding affinity against the enzyme, and two medium scoring compounds were selected as controls. Enzyme inhibition studies were performed on the bifunctional PfAdoMetDC/ODC to determine the effect the compounds had on both domains of the protein. Of the compounds assayed one of the compounds significantly reduced the activity levels of both domains of PfAdoMetDC/ODC. Additionally, one compound significantly reduced the activity level of the PfAdoMetDC domain of PfAdoMetDC/ODC. This work therefore contributes towards characterisation of the unique PfAdoMetDC/ODC in malaria parasites as a novel drug target. / Dissertation (MSc)--University of Pretoria, 2012. / Biochemistry / unrestricted
17

Computationally and Experimentally Exploring the Type IV Pilus Assembly ATPase for Antivirulence Drug Discovery

Ramos, Jazel Mae Silvela 10 August 2023 (has links)
Disease caused by antibiotic resistant (ABR) bacteria has become a widespread global public health issue as humanity's existing collection of effective antibiotics dwindles. ABR bacteria are responsible for approximately 5 million deaths worldwide annually, which is predicted to reach 10 million yearly by 2050. Antivirulence therapeutics have been explored in recent times as another approach to tackling the global ABR pandemic by disrupting the function of virulence factors that promote disease development. The bacterial type IV pilus (T4P) is a prevalent virulence factor in many ABR pathogens, contributing to bacterial pathogenesis by facilitating cell motility, surface adhesion, and biofilm formation. Critically, the T4P facilitates early stages of disease, providing a means to invade and colonize a host. T4P assembly is driven by the PilB/PilF motor ATPase that localizes to the cytoplasmic face of the inner membrane to drive pilus biogenesis by ATP hydrolysis. The thesis work here explores computational and experimental methods for the discovery of antivirulence therapeutics targeting the T4P assembly ATPase PilB. A computational model of Chloracidobacterium thermophilum PilB was generated by homology modeling and molecular docking was performed to analyze the binding characteristics of six anti-PilB inhibitory compounds identified in previous studies. Computational docking aligns with the existing body of work and reveals important protein-ligand interactions and characteristics, particularly involving the ATP binding domain of PilB. This work supports the use of PilB in structure-based virtual screening to identify novel compounds targeting PilB. Additionally, through heterologous expression and chromatography methods, the ATPase core of Neisseria gonorrhoeae PilF was successfully expressed and purified as an active ATPase. This work optimized conditions for its ATPase activity in vitro. Additionally, this thesis documents the experimental attempt to express and purify Clostridioides difficile PilB as an active ATPase. Two of the seven C. difficile PilB variant proteins expressed led to soluble protein while one construct remains to be explored. The results of these studies provide insight for future methodology design for antivirulence therapeutic research targeting the T4P assembly ATPase using both in silico and in vitro methods. / Master of Science / Antibiotic resistant bacterial infections are responsible for nearly 5 million deaths worldwide every year. These infections are becoming increasingly more difficult to treat as bacterial pathogens acquire greater means to overcome our dwindling antibiotic repertoire. This has prompted researchers to explore alternative therapeutic strategies, including the antivirulence approach that aims to disable the function or production of bacterial virulence factors. Virulence factors serve as arms and armor that help bacteria cause disease, but they may be disrupted in such a way that renders potentially pathogenic bacteria harmless to humans. One major virulence factor in many antibiotic resistant bacteria is the type IV pilus (T4P), which is important in the early stages of host invasion by mediating adhesion and biofilm formation. This work explores both computational and experimental strategies to antivirulence drug discovery targeting the T4P, specifically the primary motor protein PilB/PilF. Newly identified PilB inhibitors were evaluated by molecular docking and molecular dynamics simulation to assess the use of PilB for drug discovery via virtual screening in silico. This revealed key characteristics and protein-ligand interactions that contribute to successful PilB inhibition and supports the use of CtPilB for structure-based virtual screening. Additionally, the PilF motor protein from Neisseria gonorrhoeae was successfully purified and demonstrated to be active for inhibitor discovery in the future. This work also covers efforts to establish Clostridioides difficile PilB as potential model enzyme for inhibitor discovery in the future.
18

From malaria to cancer: Computational drug repositioning of amodiaquine using PLIP interaction patterns

Salentin, Sebastian, Adasme, Melissa F., Heinrich, Jörg C., Haupt, V. Joachim, Daminelli, Simone, Zhang, Yixin, Schroeder, Michael 07 December 2017 (has links) (PDF)
Drug repositioning identifies new indications for known drugs. Here we report repositioning of the malaria drug amodiaquine as a potential anti-cancer agent. While most repositioning efforts emerge through serendipity, we have devised a computational approach, which exploits interaction patterns shared between compounds. As a test case, we took the anti-viral drug brivudine (BVDU), which also has anti-cancer activity, and defined ten interaction patterns using our tool PLIP. These patterns characterise BVDU’s interaction with its target s. Using PLIP we performed an in silico screen of all structural data currently available and identified the FDA approved malaria drug amodiaquine as a promising repositioning candidate. We validated our prediction by showing that amodiaquine suppresses chemoresistance in a multiple myeloma cancer cell line by inhibiting the chaperone function of the cancer target Hsp27. This work proves that PLIP interaction patterns are viable tools for computational repositioning and can provide search query information from a given drug and its target to identify structurally unrelated candidates, including drugs approved by the FDA, with a known safety and pharmacology profile. This approach has the potential to reduce costs and risks in drug development by predicting novel indications for known drugs and drug candidates.
19

From malaria to cancer: Computational drug repositioning of amodiaquine using PLIP interaction patterns

Salentin, Sebastian, Adasme, Melissa F., Heinrich, Jörg C., Haupt, V. Joachim, Daminelli, Simone, Zhang, Yixin, Schroeder, Michael 07 December 2017 (has links)
Drug repositioning identifies new indications for known drugs. Here we report repositioning of the malaria drug amodiaquine as a potential anti-cancer agent. While most repositioning efforts emerge through serendipity, we have devised a computational approach, which exploits interaction patterns shared between compounds. As a test case, we took the anti-viral drug brivudine (BVDU), which also has anti-cancer activity, and defined ten interaction patterns using our tool PLIP. These patterns characterise BVDU’s interaction with its target s. Using PLIP we performed an in silico screen of all structural data currently available and identified the FDA approved malaria drug amodiaquine as a promising repositioning candidate. We validated our prediction by showing that amodiaquine suppresses chemoresistance in a multiple myeloma cancer cell line by inhibiting the chaperone function of the cancer target Hsp27. This work proves that PLIP interaction patterns are viable tools for computational repositioning and can provide search query information from a given drug and its target to identify structurally unrelated candidates, including drugs approved by the FDA, with a known safety and pharmacology profile. This approach has the potential to reduce costs and risks in drug development by predicting novel indications for known drugs and drug candidates.
20

The Development and Applications of the HINT Scoring Function: Exploring Colchicine-Site Anticancer Agents and Tautomerism

Da, Chenxiao 02 May 2013 (has links)
The overall aim of this work was to apply HINT, an empirical scoring function based on the understanding of hydrophobicity, to analyze and predict the binding affinities and biological activities of colchicine-site anticancer agents. The second, concurrent aim was to improve the scoring function by incorporating tautomerism within the modeling process. Our belief is that proper evaluation of tautomeric forms for small molecules will improve performance of virtual screening. The novel pyrrole-based compounds targeting the colchicine site were docked into the receptor using HINT as a rescoring function. Two distinct binding modes dictated by the size and shape of a subpocket were predicted to differentiate the highly active compounds from the weak ones. Of the residues predicted to participate in binding for the active binding mode, Cys241β was revealed to form a weak but critical hydrogen bond with the ligand. A larger collection of colchicine-site agents, biologically tested in the same laboratory including our pyrrole-based compounds were subject to 3D quantitative structure-activity relationship (QSAR) study. Using results on docking the pyrrole compounds as a guide, relative binding poses and QSAR models were built to facilitate ligand design and optimization. A new 3D modeling approach was introduced to visually highlight the unique features of highly active compounds and the commonality of all compounds in the dataset using HINT maps and successfully tested on the colchicine-site agents. These results will provide valuable guidance in the future design and development of new colchicine-site agents. To incorporate tautomerism within HINT, we proposed and developed two workflow approaches: a general search tool using a simple and intuitive algorithm analyzing hydrogen shift patterns to identify and enumerate tautomeric structures, and a database that contains commonly observed tautomeric structures. The first approach was designed for small-scale docking studies and the second approach was designed for large-scale virtual screening. The tautomer module in HINT will give more accurate modeling results when the compound encountered is able to tautomerize.

Page generated in 0.0708 seconds